Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1991 Dec;444:25–49. doi: 10.1113/jphysiol.1991.sp018864

Development of GABA-mediated, chloride-dependent inhibition in CA1 pyramidal neurones of immature rat hippocampal slices.

L Zhang 1, I Spigelman 1, P L Carlen 1
PMCID: PMC1179919  PMID: 1822551

Abstract

1. gamma-Aminobutyric acid (GABA)-mediated, Cl(-)-dependent inhibitory postsynaptic potentials (IPSPs) and GABA currents in immature rat hippocampal CA1 neurones were studied using the whole-cell recording technique in brain slices. 2. IPSPs evoked by electrical stimulation were observed in postnatal 2- to 5- (PN2-5), 8- to 13-(PN8-13) and 15- to 20-(PN15-20)day-old CA1 neurones. In the presence of glutamate receptor blockers 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and D-2-amino-5-phosphonovaleric acid (APV), the reversal potential for the IPSP (EIPSP) was near the resting membrane potential (RMP) in the PN2-5 neurones, but 13 and 25 mV more negative than the RMP in PN8-13 and PN15-20 neurones respectively. IPSPs and GABA currents were blocked by the GABAA-receptor antagonists bicuculline or picrotoxin. 3. The reversal potential for somatic GABA currents (EGABA) was examined in the presence of tetrodotoxin (TTX). There was a strong dependence of the EGABA upon the patch pipette [Cl-] ([Cl-]p). indicating that the GABA currents were mediated by a Cl- conductance. In PN2-5 neurones, EGABA agreed with the value predicted by the Goldman-Hodgkin-Katz equation at given concentrations of internal and external anions permeable through GABA-activated Cl- channels, whereas EGABA in older neurones was 8-18 mV more negative. 4. Examination of the relations between EGABA, holding potential, [Cl-]p and resting conductance indicated that the membrane of the PN2-5 neurones was readily permeable to Cl- which followed a passive Donnan equilibrium. Passive distribution of Cl- played a decreasing role in PN8-13 neurones and in PN15-20 neurones. 5. To assess the contribution of outward Cl- co-transport, bath applications of high K+ or furosemide were performed. High K+ and furosemide caused a reversible positive shift of EGABA in PN15-20 neurones. Raising the temperature moved EGABA to a more negative potential, with a Q10 of 5 mV. A similar change of EGABA in response to high K+, but not to furosemide, was found in PN8-13 neurones. 6. The present data indicate the existence of GABAA-mediated inhibitory synaptic connections in CA1 neurones at the earliest stages of postnatal life. During the first postnatal week, Cl- ions are passively distributed and the EIPSP and EGABA are near the RMP.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
25

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aickin C. C., Deisz R. A., Lux H. D. Ammonium action on post-synaptic inhibition in crayfish neurones: implications for the mechanism of chloride extrusion. J Physiol. 1982 Aug;329:319–339. doi: 10.1113/jphysiol.1982.sp014305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akaike N., Inomata N., Tokutomi N. Contribution of chloride shifts to the fade of gamma-aminobutyric acid-gated currents in frog dorsal root ganglion cells. J Physiol. 1987 Oct;391:219–234. doi: 10.1113/jphysiol.1987.sp016735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Altamirano A. A., Russell J. M. Coupled Na/K/Cl efflux. "Reverse" unidirectional fluxes in squid giant axons. J Gen Physiol. 1987 May;89(5):669–686. doi: 10.1085/jgp.89.5.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barker J. L., Harrison N. L. Outward rectification of inhibitory postsynaptic currents in cultured rat hippocampal neurones. J Physiol. 1988 Sep;403:41–55. doi: 10.1113/jphysiol.1988.sp017237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bayer S. A. Development of the hippocampal region in the rat. I. Neurogenesis examined with 3H-thymidine autoradiography. J Comp Neurol. 1980 Mar 1;190(1):87–114. doi: 10.1002/cne.901900107. [DOI] [PubMed] [Google Scholar]
  6. Ben-Ari Y., Cherubini E., Corradetti R., Gaiarsa J. L. Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol. 1989 Sep;416:303–325. doi: 10.1113/jphysiol.1989.sp017762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blaxter T. J., Carlen P. L., Davies M. F., Kujtan P. W. gamma-Aminobutyric acid hyperpolarizes rat hippocampal pyramidal cells through a calcium-dependent potassium conductance. J Physiol. 1986 Apr;373:181–194. doi: 10.1113/jphysiol.1986.sp016041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bormann J., Hamill O. P., Sakmann B. Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones. J Physiol. 1987 Apr;385:243–286. doi: 10.1113/jphysiol.1987.sp016493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carlen P. L., Durand D. Modelling the postsynaptic location and magnitude of tonic conductance changes resulting from neurotransmitters or drugs. Neuroscience. 1981;6(5):839–846. doi: 10.1016/0306-4522(81)90166-4. [DOI] [PubMed] [Google Scholar]
  10. Chen Q. X., Stelzer A., Kay A. R., Wong R. K. GABAA receptor function is regulated by phosphorylation in acutely dissociated guinea-pig hippocampal neurones. J Physiol. 1990 Jan;420:207–221. doi: 10.1113/jphysiol.1990.sp017908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chesnut T. J., Swann J. W. Disinhibitory actions of the GABAA agonist muscimol in immature hippocampus. Brain Res. 1989 Nov 20;502(2):365–374. doi: 10.1016/0006-8993(89)90633-1. [DOI] [PubMed] [Google Scholar]
  12. Church J., McLennan H. Electrophysiological properties of rat CA1 pyramidal neurones in vitro modified by changes in extracellular bicarbonate. J Physiol. 1989 Aug;415:85–108. doi: 10.1113/jphysiol.1989.sp017713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dunwiddie T. V. Age-related differences in the in vitro rat hippocampus. Development of inhibition and the effects of hypoxia. Dev Neurosci. 1981;4(3):165–175. doi: 10.1159/000112753. [DOI] [PubMed] [Google Scholar]
  14. Edwards F. A., Konnerth A., Sakmann B., Takahashi T. A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflugers Arch. 1989 Sep;414(5):600–612. doi: 10.1007/BF00580998. [DOI] [PubMed] [Google Scholar]
  15. Fenwick E. M., Marty A., Neher E. A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J Physiol. 1982 Oct;331:577–597. doi: 10.1113/jphysiol.1982.sp014393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gallagher J. P., Nakamura J., Shinnick-Gallagher P. The effects of temperature, pH and Cl-pump inhibitors on GABA responses recorded from cat dorsal root ganglia. Brain Res. 1983 May 16;267(2):249–259. doi: 10.1016/0006-8993(83)90877-6. [DOI] [PubMed] [Google Scholar]
  17. Goldman D. E. POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES. J Gen Physiol. 1943 Sep 20;27(1):37–60. doi: 10.1085/jgp.27.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Haglund M. M., Schwartzkroin P. A. Role of Na-K pump potassium regulation and IPSPs in seizures and spreading depression in immature rabbit hippocampal slices. J Neurophysiol. 1990 Feb;63(2):225–239. doi: 10.1152/jn.1990.63.2.225. [DOI] [PubMed] [Google Scholar]
  21. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  22. Harris K. M., Teyler T. J. Evidence for late development of inhibition in area CA1 of the rat hippocampus. Brain Res. 1983 Jun 6;268(2):339–343. doi: 10.1016/0006-8993(83)90500-0. [DOI] [PubMed] [Google Scholar]
  23. Huguenard J. R., Alger B. E. Whole-cell voltage-clamp study of the fading of GABA-activated currents in acutely dissociated hippocampal neurons. J Neurophysiol. 1986 Jul;56(1):1–18. doi: 10.1152/jn.1986.56.1.1. [DOI] [PubMed] [Google Scholar]
  24. Janigro D., Schwartzkroin P. A. Effects of GABA and baclofen on pyramidal cells in the developing rabbit hippocampus: an 'in vitro' study. Brain Res. 1988 Jun 1;469(1-2):171–184. doi: 10.1016/0165-3806(88)90180-0. [DOI] [PubMed] [Google Scholar]
  25. Korn S. J., Giacchino J. L., Chamberlin N. L., Dingledine R. Epileptiform burst activity induced by potassium in the hippocampus and its regulation by GABA-mediated inhibition. J Neurophysiol. 1987 Jan;57(1):325–340. doi: 10.1152/jn.1987.57.1.325. [DOI] [PubMed] [Google Scholar]
  26. Krnjević K., Schwartz S. The action of gamma-aminobutyric acid on cortical neurones. Exp Brain Res. 1967;3(4):320–336. doi: 10.1007/BF00237558. [DOI] [PubMed] [Google Scholar]
  27. Llinas R., Baker R., Precht W. Blockage of inhibition by ammonium acetate action on chloride pump in cat trochlear motoneurons. J Neurophysiol. 1974 May;37(3):522–532. doi: 10.1152/jn.1974.37.3.522. [DOI] [PubMed] [Google Scholar]
  28. Lux H. D., Loracher C., Neher E. The action of ammonium on postsynaptic inhibition of cat spinal motoneurons. Exp Brain Res. 1970;11(5):431–447. doi: 10.1007/BF00233967. [DOI] [PubMed] [Google Scholar]
  29. McCarren M., Alger B. E. Use-dependent depression of IPSPs in rat hippocampal pyramidal cells in vitro. J Neurophysiol. 1985 Feb;53(2):557–571. doi: 10.1152/jn.1985.53.2.557. [DOI] [PubMed] [Google Scholar]
  30. Michelson H. B., Lothman E. W. An in vivo electrophysiological study of the ontogeny of excitatory and inhibitory processes in the rat hippocampus. Brain Res Dev Brain Res. 1989 May 1;47(1):113–122. doi: 10.1016/0165-3806(89)90113-2. [DOI] [PubMed] [Google Scholar]
  31. Misgeld U., Deisz R. A., Dodt H. U., Lux H. D. The role of chloride transport in postsynaptic inhibition of hippocampal neurons. Science. 1986 Jun 13;232(4756):1413–1415. doi: 10.1126/science.2424084. [DOI] [PubMed] [Google Scholar]
  32. Mueller A. L., Taube J. S., Schwartzkroin P. A. Development of hyperpolarizing inhibitory postsynaptic potentials and hyperpolarizing response to gamma-aminobutyric acid in rabbit hippocampus studied in vitro. J Neurosci. 1984 Mar;4(3):860–867. doi: 10.1523/JNEUROSCI.04-03-00860.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Muller D., Oliver M., Lynch G. Developmental changes in synaptic properties in hippocampus of neonatal rats. Brain Res Dev Brain Res. 1989 Sep 1;49(1):105–114. doi: 10.1016/0165-3806(89)90063-1. [DOI] [PubMed] [Google Scholar]
  34. Newberry N. R., Nicoll R. A. A bicuculline-resistant inhibitory post-synaptic potential in rat hippocampal pyramidal cells in vitro. J Physiol. 1984 Mar;348:239–254. doi: 10.1113/jphysiol.1984.sp015107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nicoll R. A., Malenka R. C., Kauer J. A. Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol Rev. 1990 Apr;70(2):513–565. doi: 10.1152/physrev.1990.70.2.513. [DOI] [PubMed] [Google Scholar]
  36. Nicoll R. A. The blockade of GABA mediated responses in the frog spinal cord by ammonium ions and furosemide. J Physiol. 1978 Oct;283:121–132. doi: 10.1113/jphysiol.1978.sp012491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Onodera K., Takeuchi A. Inhibitory postsynaptic current in voltage-clamped crayfish muscle. Nature. 1976 Sep 9;263(5573):153–154. doi: 10.1038/263153a0. [DOI] [PubMed] [Google Scholar]
  38. Pokorný J., Yamamoto T. Postnatal ontogenesis of hippocampal CA1 area in rats. I. Development of dendritic arborisation in pyramidal neurons. Brain Res Bull. 1981 Aug;7(2):113–120. doi: 10.1016/0361-9230(81)90075-7. [DOI] [PubMed] [Google Scholar]
  39. Raabe W., Gumnit R. J. Disinhibition in cat motor cortex by ammonia. J Neurophysiol. 1975 Mar;38(2):347–355. doi: 10.1152/jn.1975.38.2.347. [DOI] [PubMed] [Google Scholar]
  40. Rozenberg F., Robain O., Jardin L., Ben-Ari Y. Distribution of GABAergic neurons in late fetal and early postnatal rat hippocampus. Brain Res Dev Brain Res. 1989 Dec 1;50(2):177–187. doi: 10.1016/0165-3806(89)90193-4. [DOI] [PubMed] [Google Scholar]
  41. Russell J. M., Brown A. M. Active transport of chloride by the giant neuron of the Aplysia abdominal ganglion. J Gen Physiol. 1972 Nov;60(5):499–518. doi: 10.1085/jgp.60.5.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Scappaticci K. A., Dretchen K. L., Carpenter D. O., Pellmar T. C. Effects of furosemide on neural mechanisms in Aplysia. J Neurobiol. 1981 Jul;12(4):329–341. doi: 10.1002/neu.480120403. [DOI] [PubMed] [Google Scholar]
  43. Schlessinger A. R., Cowan W. M., Swanson L. W. The time of origin of neurons in Ammon's horn and the associated retrohippocampal fields. Anat Embryol (Berl) 1978 Aug 18;154(2):153–173. doi: 10.1007/BF00304660. [DOI] [PubMed] [Google Scholar]
  44. Shiroya T., Fukunaga R., Akashi K., Shimada N., Takagi Y., Nishino T., Hara M., Inagaki C. An ATP-driven Cl- pump in the brain. J Biol Chem. 1989 Oct 15;264(29):17416–17421. [PubMed] [Google Scholar]
  45. Stelzer A., Kay A. R., Wong R. K. GABAA-receptor function in hippocampal cells is maintained by phosphorylation factors. Science. 1988 Jul 15;241(4863):339–341. doi: 10.1126/science.2455347. [DOI] [PubMed] [Google Scholar]
  46. Swann J. W., Brady R. J., Martin D. L. Postnatal development of GABA-mediated synaptic inhibition in rat hippocampus. Neuroscience. 1989;28(3):551–561. doi: 10.1016/0306-4522(89)90004-3. [DOI] [PubMed] [Google Scholar]
  47. Thompson S. M., Deisz R. A., Prince D. A. Outward chloride/cation co-transport in mammalian cortical neurons. Neurosci Lett. 1988 Jun 17;89(1):49–54. doi: 10.1016/0304-3940(88)90479-x. [DOI] [PubMed] [Google Scholar]
  48. Thompson S. M., Deisz R. A., Prince D. A. Relative contributions of passive equilibrium and active transport to the distribution of chloride in mammalian cortical neurons. J Neurophysiol. 1988 Jul;60(1):105–124. doi: 10.1152/jn.1988.60.1.105. [DOI] [PubMed] [Google Scholar]
  49. Thompson S. M., Gähwiler B. H. Activity-dependent disinhibition. II. Effects of extracellular potassium, furosemide, and membrane potential on ECl- in hippocampal CA3 neurons. J Neurophysiol. 1989 Mar;61(3):512–523. doi: 10.1152/jn.1989.61.3.512. [DOI] [PubMed] [Google Scholar]
  50. Wong R. K., Watkins D. J. Cellular factors influencing GABA response in hippocampal pyramidal cells. J Neurophysiol. 1982 Oct;48(4):938–951. doi: 10.1152/jn.1982.48.4.938. [DOI] [PubMed] [Google Scholar]
  51. Zhang L., Spigelman I., Carlen P. L. Whole-cell patch study of GABAergic inhibition in CA1 neurons of immature rat hippocampal slices. Brain Res Dev Brain Res. 1990 Oct 1;56(1):127–130. doi: 10.1016/0165-3806(90)90171-t. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES