Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1991 Dec;444:51–63. doi: 10.1113/jphysiol.1991.sp018865

Electrical activation and c-fos mRNA expression in rat neurosecretory neurones after systemic administration of cholecystokinin.

M Hamamura 1, G Leng 1, P C Emson 1, H Kiyama 1
PMCID: PMC1179920  PMID: 1822561

Abstract

1. The expression of c-fos mRNA in the rat hypothalamus was examined by in situ hybridization following systemic administration of cholecystokinin (CCK), a procedure known to activate magnocellular oxytocin neurons but not magnocellular vasopressin neurones. 2. Conscious male rats were given a single I.P. injection of 50 micrograms/kg CCK, c-fos mRNA signal was apparent in the supraoptic and paraventricular nuclei in rats killed 10 min after injection but not in uninjected or saline-(vehicle) injected rats. The density of c-fos mRNA at both sites was further elevated in rats killed 30 min or 60 min following injection, and was absent in rats killed 4 h after injection. 3. In the paraventricular nucleus the most dense expression of c-fos mRNA following CCK administration was in the medial, mainly parvocellular portion of the nucleus, in an area corresponding to the distribution of corticotrophin-releasing factor mRNA determined by in situ hybridization in adjacent sections. 4. The I.P. injection of CCK increased plasma oxytocin concentrations, measured by specific radioimmunoassay from 13 +/- 5 pg/ml in control rats to 107 +/- 9 pg/ml in the rats killed 10 min after injection, a similar response to that observed previously in urethane-anaesthetized rats. 5. In each of six urethane-anaesthetized rats, recordings were made from single neurones in the supraoptic nucleus, identified antidronomically as projecting to the posterior pituitary and identified electrophysiologically as putative oxytocin neurones. Following I.P. injection of 50 micrograms/kg CCK, the neurones increased their firing rate by a mean of 1.3 +/- 0.2 spikes/s averaged over the 10 min following injection. 6. From the appearance of c-fos mRNA in supraoptic neurones following CCK administration we conclude that this message is expressed in magnocellular oxytocin neurones, since vasopressin neuronal activity and vasopressin release is known to be unaffected by this stimulus, and since the supraoptic nucleus contains essentially only oxytocin neurones and vasopressin neurones. 7. We conclude that c-fos mRNA expression can be induced in supraoptic oxytocin neurones following brief and modest episodes of electrical activation, suggesting that c-fos may be involved in the gene regulation of these neurones under physiological conditions.

Full text

PDF
51

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronin N., Sagar S. M., Sharp F. R., Schwartz W. J. Light regulates expression of a Fos-related protein in rat suprachiasmatic nuclei. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5959–5962. doi: 10.1073/pnas.87.15.5959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blackburn R. E., Leng G. Ablation of the region anterior and ventral to the third ventricle (AV3V region) in the rat does not abolish the release of oxytocin in response to systemic cholecystokinin. Brain Res. 1990 Jan 29;508(1):156–160. doi: 10.1016/0006-8993(90)91130-9. [DOI] [PubMed] [Google Scholar]
  3. Bondy C. A., Jensen R. T., Brady L. S., Gainer H. Cholecystokinin evokes secretion of oxytocin and vasopressin from rat neural lobe independent of external calcium. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5198–5201. doi: 10.1073/pnas.86.13.5198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brimble M. J., Dyball R. E., Forsling M. L. Oxytocin release following osmotic activation of oxytocin neurones in the paraventricular and supraoptic nuclei. J Physiol. 1978 May;278:69–78. doi: 10.1113/jphysiol.1978.sp012293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ceccatelli S., Villar M. J., Goldstein M., Hökfelt T. Expression of c-Fos immunoreactivity in transmitter-characterized neurons after stress. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9569–9573. doi: 10.1073/pnas.86.23.9569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Curran T., Gordon M. B., Rubino K. L., Sambucetti L. C. Isolation and characterization of the c-fos(rat) cDNA and analysis of post-translational modification in vitro. Oncogene. 1987;2(1):79–84. [PubMed] [Google Scholar]
  7. Day N. C., Hall M. D., Hughes J. Modulation of hypothalamic cholecystokinin receptor density with changes in magnocellular activity: a quantitative autoradiographic study. Neuroscience. 1989;29(2):371–383. doi: 10.1016/0306-4522(89)90064-x. [DOI] [PubMed] [Google Scholar]
  8. Ebenezer I. S., Thornton S. N., Parrott R. F. Anterior and posterior pituitary hormone release induced in sheep by cholecystokinin. Am J Physiol. 1989 Jun;256(6 Pt 2):R1355–R1357. doi: 10.1152/ajpregu.1989.256.6.R1355. [DOI] [PubMed] [Google Scholar]
  9. Giovannelli L., Shiromani P. J., Jirikowski G. F., Bloom F. E. Oxytocin neurons in the rat hypothalamus exhibit c-fos immunoreactivity upon osmotic stress. Brain Res. 1990 Oct 29;531(1-2):299–303. doi: 10.1016/0006-8993(90)90789-e. [DOI] [PubMed] [Google Scholar]
  10. Harris M. C. Effects of chemoreceptor and baroreceptor stimulation on the discharge of hypothalamic supraoptic neurones in rats. J Endocrinol. 1979 Jul;82(1):115–125. doi: 10.1677/joe.0.0820115. [DOI] [PubMed] [Google Scholar]
  11. Higuchi T., Honda K., Fukuoka T., Negoro H., Wakabayashi K. Release of oxytocin during suckling and parturition in the rat. J Endocrinol. 1985 Jun;105(3):339–346. doi: 10.1677/joe.0.1050339. [DOI] [PubMed] [Google Scholar]
  12. Hoffman G. E., Lee W. S., Attardi B., Yann V., Fitzsimmons M. D. Luteinizing hormone-releasing hormone neurons express c-fos antigen after steroid activation. Endocrinology. 1990 Mar;126(3):1736–1741. doi: 10.1210/endo-126-3-1736. [DOI] [PubMed] [Google Scholar]
  13. Hunt S. P., Pini A., Evan G. Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature. 1987 Aug 13;328(6131):632–634. doi: 10.1038/328632a0. [DOI] [PubMed] [Google Scholar]
  14. Ivell R., Richter D. Structure and comparison of the oxytocin and vasopressin genes from rat. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2006–2010. doi: 10.1073/pnas.81.7.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jacobson L., Sharp F. R., Dallman M. F. Induction of fos-like immunoreactivity in hypothalamic corticotropin-releasing factor neurons after adrenalectomy in the rat. Endocrinology. 1990 Mar;126(3):1709–1719. doi: 10.1210/endo-126-3-1709. [DOI] [PubMed] [Google Scholar]
  16. Jingami H., Mizuno N., Takahashi H., Shibahara S., Furutani Y., Imura H., Numa S. Cloning and sequence analysis of cDNA for rat corticotropin-releasing factor precursor. FEBS Lett. 1985 Oct 21;191(1):63–66. doi: 10.1016/0014-5793(85)80994-7. [DOI] [PubMed] [Google Scholar]
  17. Kaczmarek L., Siedlecki J. A., Danysz W. Proto-oncogene c-fos induction in rat hippocampus. Brain Res. 1988 Apr;427(2):183–186. doi: 10.1016/0169-328x(88)90064-2. [DOI] [PubMed] [Google Scholar]
  18. Kornhauser J. M., Nelson D. E., Mayo K. E., Takahashi J. S. Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus. Neuron. 1990 Aug;5(2):127–134. doi: 10.1016/0896-6273(90)90303-w. [DOI] [PubMed] [Google Scholar]
  19. Lee W. S., Smith M. S., Hoffman G. E. Luteinizing hormone-releasing hormone neurons express Fos protein during the proestrous surge of luteinizing hormone. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5163–5167. doi: 10.1073/pnas.87.13.5163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Leng G. The effects of neural stalk stimulation upon firing patterns in rat supraoptic neurones. Exp Brain Res. 1981;41(2):135–145. doi: 10.1007/BF00236603. [DOI] [PubMed] [Google Scholar]
  21. Lightman S. L., Young W. S., 3rd Vasopressin, oxytocin, dynorphin, enkephalin and corticotrophin-releasing factor mRNA stimulation in the rat. J Physiol. 1987 Dec;394:23–39. doi: 10.1113/jphysiol.1987.sp016858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mason W. T., Leng G. Complex action potential waveform recorded from supraoptic and paraventricular neurones of the rat: evidence for sodium and calcium spike components at different membrane sites. Exp Brain Res. 1984;56(1):135–143. doi: 10.1007/BF00237449. [DOI] [PubMed] [Google Scholar]
  23. Morgan J. I., Cohen D. R., Hempstead J. L., Curran T. Mapping patterns of c-fos expression in the central nervous system after seizure. Science. 1987 Jul 10;237(4811):192–197. doi: 10.1126/science.3037702. [DOI] [PubMed] [Google Scholar]
  24. Morgan J. I., Curran T. Role of ion flux in the control of c-fos expression. Nature. 1986 Aug 7;322(6079):552–555. doi: 10.1038/322552a0. [DOI] [PubMed] [Google Scholar]
  25. Morgan J. I., Curran T. Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends Neurosci. 1989 Nov;12(11):459–462. doi: 10.1016/0166-2236(89)90096-9. [DOI] [PubMed] [Google Scholar]
  26. Naranjo J. R., Mellström B., Achaval M., Sassone-Corsi P. Molecular pathways of pain: Fos/Jun-mediated activation of a noncanonical AP-1 site in the prodynorphin gene. Neuron. 1991 Apr;6(4):607–617. doi: 10.1016/0896-6273(91)90063-6. [DOI] [PubMed] [Google Scholar]
  27. Rauscher F. J., 3rd, Voulalas P. J., Franza B. R., Jr, Curran T. Fos and Jun bind cooperatively to the AP-1 site: reconstitution in vitro. Genes Dev. 1988 Dec;2(12B):1687–1699. doi: 10.1101/gad.2.12b.1687. [DOI] [PubMed] [Google Scholar]
  28. Renaud L. P., Tang M., McCann M. J., Stricker E. M., Verbalis J. G. Cholecystokinin and gastric distension activate oxytocinergic cells in rat hypothalamus. Am J Physiol. 1987 Oct;253(4 Pt 2):R661–R665. doi: 10.1152/ajpregu.1987.253.4.R661. [DOI] [PubMed] [Google Scholar]
  29. Sawchenko P. E., Swanson L. W. Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol. 1982 Mar 1;205(3):260–272. doi: 10.1002/cne.902050306. [DOI] [PubMed] [Google Scholar]
  30. Sheng M., McFadden G., Greenberg M. E. Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron. 1990 Apr;4(4):571–582. doi: 10.1016/0896-6273(90)90115-v. [DOI] [PubMed] [Google Scholar]
  31. Sofroniew M. V. Morphology of vasopressin and oxytocin neurones and their central and vascular projections. Prog Brain Res. 1983;60:101–114. doi: 10.1016/S0079-6123(08)64378-2. [DOI] [PubMed] [Google Scholar]
  32. Sonnenberg J. L., Rauscher F. J., 3rd, Morgan J. I., Curran T. Regulation of proenkephalin by Fos and Jun. Science. 1989 Dec 22;246(4937):1622–1625. doi: 10.1126/science.2512642. [DOI] [PubMed] [Google Scholar]
  33. Verbalis J. G., McCann M. J., McHale C. M., Stricker E. M. Oxytocin secretion in response to cholecystokinin and food: differentiation of nausea from satiety. Science. 1986 Jun 13;232(4756):1417–1419. doi: 10.1126/science.3715453. [DOI] [PubMed] [Google Scholar]
  34. Wisden W., Errington M. L., Williams S., Dunnett S. B., Waters C., Hitchcock D., Evan G., Bliss T. V., Hunt S. P. Differential expression of immediate early genes in the hippocampus and spinal cord. Neuron. 1990 Apr;4(4):603–614. doi: 10.1016/0896-6273(90)90118-y. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES