Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1991 Dec;444:99–116. doi: 10.1113/jphysiol.1991.sp018868

Acetylcholine recycling and release at rat motor nerve terminals studied using (-)-vesamicol and troxpyrrolium.

T Searl 1, C Prior 1, I G Marshall 1
PMCID: PMC1179923  PMID: 1668355

Abstract

1. The presynaptic mechanisms governing the release and recycling of synaptic vesicles have been studied by examining the effects of nerve stimulation, (-)-vesamicol (an inhibitor of acetylcholine transport into synaptic vesicles) and troxypyrrolium (an inhibitor of the high-affinity, sodium-dependent, choline uptake system) on endplate currents (EPCs) and miniature endplate currents (MECPs) recorded from motor endplates in cut rat hemidiaphragm preparations. 2. In control experiments, 5 min of 10 Hz nerve stimulation had no effect on either the mean or the distribution of MEPC amplitudes. 3. Nerve stimulation in the presence of (-)-vesamicol (25 nM-10 microM) revealed a population of MEPCs that was unaffected by the compound and a population of MEPCs whose mean amplitude was selectively reduced by the compound. 4. Nerve stimulation in the presence of troxypyrrolium (20 microM) produced a uniform reduction in the amplitude of all MEPCs with no change in the coefficient of variance of MEPC amplitudes. 5. The concentration-dependent effects of (-)-vesamicol on the amplitude of the evoked EPCs paralleled the concentration-dependent effects of the compound on MEPC amplitudes. 6. The results are consistent with the hypothesis that both recycled and performed synaptic vesicles are heterogeneously released from rat motor nerve terminals and that (-)-vesamicol acts selectively on recycling vesicles. In addition, a model of vascular loading that accounts for the different effects of nerve stimulation on MEPC amplitudes in the presence of (-)-vesamicol and troxypyrrolium is described.

Full text

PDF
99

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. C., King S. C., Parsons S. M. Pharmacological characterization of the acetylcholine transport system in purified Torpedo electric organ synaptic vesicles. Mol Pharmacol. 1983 Jul;24(1):48–54. [PubMed] [Google Scholar]
  2. Bahr B. A., Parsons S. M. Demonstration of a receptor in Torpedo synaptic vesicles for the acetylcholine storage blocker L-trans-2-(4-phenyl[3,4-3H]-piperidino) cyclohexanol. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2267–2270. doi: 10.1073/pnas.83.7.2267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barstad J. A., Lilleheil G. Transversaly cut diaphragm preparation from rat. An adjuvant tool in the study of the physiology and pbarmacology of the myoneural junction. Arch Int Pharmacodyn Ther. 1968 Oct;175(2):373–390. [PubMed] [Google Scholar]
  4. Bhatnagar S. P., MacIntosh F. C. Effects of quaternary bases and inorganic cations on acetylcholine synthesis in nervous tissue. Can J Physiol Pharmacol. 1967 Mar;45(2):249–268. doi: 10.1139/y67-028. [DOI] [PubMed] [Google Scholar]
  5. Cabeza R., Collier B. Acetylcholine mobilization in a sympathetic ganglion in the presence and absence of 2-(4-phenylpiperidino)cyclohexanol (AH5183). J Neurochem. 1988 Jan;50(1):112–121. doi: 10.1111/j.1471-4159.1988.tb13237.x. [DOI] [PubMed] [Google Scholar]
  6. Carroll P. T. The effect of the acetylcholine transport blocker 2-(4-phenylpiperidino) cyclohexanol (AH5183) on the subcellular storage and release of acetylcholine in mouse brain. Brain Res. 1985 Dec 9;358(1-2):200–209. doi: 10.1016/0006-8993(85)90964-3. [DOI] [PubMed] [Google Scholar]
  7. Colquhoun D., Large W. A., Rang H. P. An analysis of the action of a false transmitter at the neuromuscular junction. J Physiol. 1977 Apr;266(2):361–395. doi: 10.1113/jphysiol.1977.sp011772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DE ROBERTIS E. D., BENNETT H. S. Some features of the submicroscopic morphology of synapses in frog and earthworm. J Biophys Biochem Cytol. 1955 Jan;1(1):47–58. doi: 10.1083/jcb.1.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DEL CASTILLO J., KATZ B. Biophysical aspects of neuro-muscular transmission. Prog Biophys Biophys Chem. 1956;6:121–170. [PubMed] [Google Scholar]
  10. DEL CASTILLO J., KATZ B. Quantal components of the end-plate potential. J Physiol. 1954 Jun 28;124(3):560–573. doi: 10.1113/jphysiol.1954.sp005129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dionne V. E., Stevens C. F. Voltage dependence of agonist effectiveness at the frog neuromuscular junction: resolution of a paradox. J Physiol. 1975 Oct;251(2):245–270. doi: 10.1113/jphysiol.1975.sp011090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. ELMQVIST D., QUASTEL D. M. PRESYNAPTIC ACTION OF HEMICHOLINIUM AT THE NEUROMUSCULAR JUNCTION. J Physiol. 1965 Apr;177:463–482. doi: 10.1113/jphysiol.1965.sp007605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Elmqvist D., Quastel D. M. A quantitative study of end-plate potentials in isolated human muscle. J Physiol. 1965 Jun;178(3):505–529. doi: 10.1113/jphysiol.1965.sp007639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Enomoto K. Post- and presynaptic effects of vesamicol (AH5183) on the frog neuromuscular junction. Eur J Pharmacol. 1988 Mar 1;147(2):209–215. doi: 10.1016/0014-2999(88)90779-0. [DOI] [PubMed] [Google Scholar]
  15. FATT P., KATZ B. Spontaneous subthreshold activity at motor nerve endings. J Physiol. 1952 May;117(1):109–128. [PMC free article] [PubMed] [Google Scholar]
  16. Gibb A. J., Marshall I. G. Pre-and post-junctional effects of tubocurarine and other nicotinic antagonists during repetitive stimulation in the rat. J Physiol. 1984 Jun;351:275–297. doi: 10.1113/jphysiol.1984.sp015245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Glavinović M. I. Voltage clamping of unparalysed cut rat diaphragm for study of transmitter release. J Physiol. 1979 May;290(2):467–480. doi: 10.1113/jphysiol.1979.sp012784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gracz L. M., Wang W. C., Parsons S. M. Cholinergic synaptic vesicle heterogeneity: evidence for regulation of acetylcholine transport. Biochemistry. 1988 Jul 12;27(14):5268–5274. doi: 10.1021/bi00414a048. [DOI] [PubMed] [Google Scholar]
  19. Jope R. S., Johnson G. V. Quinacrine and 2-(4-phenylpiperidino)cyclohexanol (AH5183) inhibit acetylcholine release and synthesis in rat brain slices. Mol Pharmacol. 1986 Jan;29(1):45–51. [PubMed] [Google Scholar]
  20. Large W. A., Rang H. P. Factors affecting the rate of incorporation of a false transmitter into mammalian motor nerve terminals. J Physiol. 1978 Dec;285:1–24. doi: 10.1113/jphysiol.1978.sp012553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Large W. A., Rang H. P. Variability of transmitter quanta released during incorporation of a false transmitter into cholinergic nerve terminals. J Physiol. 1978 Dec;285:25–34. doi: 10.1113/jphysiol.1978.sp012554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lupa M. T. Effects of an inhibitor of the synaptic vesicle acetylcholine transport system on quantal neurotransmitter release: an electrophysiological study. Brain Res. 1988 Sep 27;461(1):118–126. doi: 10.1016/0006-8993(88)90730-5. [DOI] [PubMed] [Google Scholar]
  23. Marchbanks R. M., Israël M. Aspects of acetylcholine metabolism in the electric organ of Torpedo marmorata. J Neurochem. 1971 Mar;18(3):439–448. doi: 10.1111/j.1471-4159.1971.tb11971.x. [DOI] [PubMed] [Google Scholar]
  24. Searl T., Prior C., Marshall I. G. The effects of L-vesamicol, an inhibitor of vesicular acetylcholine uptake, on two populations of miniature endplate currents at the snake neuromuscular junction. Neuroscience. 1990;35(1):145–156. doi: 10.1016/0306-4522(90)90129-r. [DOI] [PubMed] [Google Scholar]
  25. Van der Kloot W. 2-(4-phenylpiperidino) cyclohexanol (AH5183) decreases quantal size at the frog neuromuscular junction. Pflugers Arch. 1986 Jan;406(1):83–85. doi: 10.1007/BF00582958. [DOI] [PubMed] [Google Scholar]
  26. Vizi E. S. In favour of the vesicular hypothesis: neurochemical evidence that vesamicol (AH5183) inhibits stimulation-evoked release of acetylcholine from neuromuscular junction. Br J Pharmacol. 1989 Nov;98(3):898–902. doi: 10.1111/j.1476-5381.1989.tb14619.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Weiler M., Roed I. S., Whittaker V. P. The kinetics of acetylcholine turnover in a resting cholinergic nerve terminal and the magnitude of the cytoplasmic compartment. J Neurochem. 1982 May;38(5):1187–1191. doi: 10.1111/j.1471-4159.1982.tb07889.x. [DOI] [PubMed] [Google Scholar]
  28. Whitton P. S., Marshall I. G., Parsons S. M. Reduction of quantal size by vesamicol (AH5183), an inhibitor of vesicular acetylcholine storage. Brain Res. 1986 Oct 15;385(1):189–192. doi: 10.1016/0006-8993(86)91565-9. [DOI] [PubMed] [Google Scholar]
  29. Zimmerman H., Denston C. R. Recycling of synaptic vesicles in the cholinergic synapses of the Torpedo electric organ during induced transmitter release. Neuroscience. 1977;2(5):695–714. doi: 10.1016/0306-4522(77)90024-0. [DOI] [PubMed] [Google Scholar]
  30. Zimmermann H., Denston C. R. Separation of synaptic vesicles of different functional states from the cholinergic synapses of the Torpedo electric organ. Neuroscience. 1977;2(5):715–730. doi: 10.1016/0306-4522(77)90025-2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES