Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1991 Dec;444:723–742. doi: 10.1113/jphysiol.1991.sp018903

Calcium current and charge movement of mammalian muscle: action of amyotrophic lateral sclerosis immunoglobulins.

O Delbono 1, J García 1, S H Appel 1, E Stefani 1
PMCID: PMC1179958  PMID: 1668354

Abstract

1. The Vaseline-gap voltage clamp technique was used to record dihydropyridine (DHP)-sensitive Ca2+ currents (ICa) and charge movement in single cut fibres from the rat extensor digitorum longus (EDL) muscle. Amyotrophic lateral sclerosis (ALS) immunoglobulin G (IgG) action on ICa and charge movement has been characterized. 2. ALS IgG reduced ICa amplitude. The peak ICa of EDL fibres (mean +/- S.E.M.) at 0 mV, expressed as amperes per membrane capacitance, was -4.79 +/- 0.029 A F-1, while after 30 min incubation in ALS IgG it was -2.52 +/- 0.04 A F-1. IgG from healthy patients, and from patients with other diseases (familial ALS, myasthenia gravis, chronic relapsing inflammatory polyneuritis, multiple sclerosis and one sample from Lambert-Eaton syndrome, LES) did not affect ICa, while IgG from patients with Guillain-Barré syndrome and one other sample from a patient with LES affected the ICa in a similar way as ALS IgG. 3. The time constant of ICa activation (alpha m) at 0 mV was 44.8 +/- 1.4 ms in control, and 36.6 +/- 1.5 ms after an incubation of 30 min in ALS IgG. The steady-state activation curve (m infinity) was shifted to more positive potentials by ALS IgG. 4. The rate constants of activation (range -20 to 30 mV) were altered by ALS IgG: alpha m decreased while beta m increased. These data suggest that ALS IgG favours the permanence of the Ca2+ channels in the closed state. 5. The time constant of Ca2+ channels deactivation at -90 mV with a pre-pulse to 0 mV was 4.4 +/- 0.5 ms in control and 4.1 +/- 0.6 ms in ALS IgG. The relationship between the deactivation time constant and membrane potential was not significantly modified by ALS IgG. 6. ICa inactivation was not affected by ALS IgG. The potentials of half-inactivation were -32.1 and -36.6 mV in control and ALS IgG, respectively. Similarly, the rate constants of inactivation (alpha h and beta h) remained unaltered by ALS IgG. 7. We successfully blocked ICa with 100 microM-TMB-8 (3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester hydrochloride), without major effects on charge movement. We adopted this procedure to study charge movement. ALS IgG reduced charge movement without significant effects on the effective valence and voltage dependence. Qon and Qoff, the charges during and after the pulse, were similarly affected by ALS IgG. 8. The actions of ALS IgG on DHP-sensitive Ca2+ current and charge movement suggest an interaction between ALS IgG and some component of the DHP-receptor complex.

Full text

PDF
723

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appel S. H., Engelhardt J. I., García J., Stefani E. Immunoglobulins from animal models of motor neuron disease and from human amyotrophic lateral sclerosis patients passively transfer physiological abnormalities to the neuromuscular junction. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):647–651. doi: 10.1073/pnas.88.2.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atchison W. D., O'Leary S. M. BAY K 8644 increases release of acetylcholine at the murine neuromuscular junction. Brain Res. 1987 Sep 1;419(1-2):315–319. doi: 10.1016/0006-8993(87)90599-3. [DOI] [PubMed] [Google Scholar]
  3. Baeyens J. M., Del Pozo E. Comparison of the effects of calcium and the calcium channel stimulant Bay k 8644 on neomycin-induced neuromuscular blockade. Pharmacol Toxicol. 1989 Nov;65(5):398–401. doi: 10.1111/j.1600-0773.1989.tb01197.x. [DOI] [PubMed] [Google Scholar]
  4. Brum G., Rios E. Intramembrane charge movement in frog skeletal muscle fibres. Properties of charge 2. J Physiol. 1987 Jun;387:489–517. doi: 10.1113/jphysiol.1987.sp016586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chiou C. Y., Malagodi M. H. Studies on the mechanism of action of a new Ca-2+ antagonist, 8-(N,N-diethylamino)octyl 3,4,5-trimethoxybenzoate hydrochloride in smooth and skeletal muscles. Br J Pharmacol. 1975 Feb;53(2):279–285. doi: 10.1111/j.1476-5381.1975.tb07359.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Delbono O., Kotsias B. A. Relation between action potential duration and mechanical activity on rat diaphragm fibers. Effects of 3,4-diaminopyridine and tetraethylammonium. Pflugers Arch. 1987 Nov;410(4-5):394–400. doi: 10.1007/BF00586516. [DOI] [PubMed] [Google Scholar]
  7. Donaldson P. L., Beam K. G. Calcium currents in a fast-twitch skeletal muscle of the rat. J Gen Physiol. 1983 Oct;82(4):449–468. doi: 10.1085/jgp.82.4.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dulhunty A. F., Gage P. W. Asymmetrical charge movement in slow- and fast-twitch mammalian muscle fibres in normal and paraplegic rats. J Physiol. 1983 Aug;341:213–231. doi: 10.1113/jphysiol.1983.sp014802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Engelhardt J. I., Appel S. H., Killian J. M. Experimental autoimmune motoneuron disease. Ann Neurol. 1989 Sep;26(3):368–376. doi: 10.1002/ana.410260310. [DOI] [PubMed] [Google Scholar]
  10. Engelhardt J. I., Appel S. H., Killian J. M. Motor neuron destruction in guinea pigs immunized with bovine spinal cord ventral horn homogenate: experimental autoimmune gray matter disease. J Neuroimmunol. 1990 Apr;27(1):21–31. doi: 10.1016/0165-5728(90)90132-7. [DOI] [PubMed] [Google Scholar]
  11. Francini F., Stefani E. Decay of the slow calcium current in twitch muscle fibers of the frog is influenced by intracellular EGTA. J Gen Physiol. 1989 Nov;94(5):953–969. doi: 10.1085/jgp.94.5.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Frank G. B. Pharmacological studies of excitation-contraction coupling in skeletal muscle. Can J Physiol Pharmacol. 1987 Apr;65(4):711–716. doi: 10.1139/y87-117. [DOI] [PubMed] [Google Scholar]
  13. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hollingworth S., Marshall M. W., Robson E. The effects of tetracaine on charge movement in fast twitch rat skeletal muscle fibres. J Physiol. 1990 Feb;421:633–644. doi: 10.1113/jphysiol.1990.sp017966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Horowicz P., Schneider M. F. Membrane charge movement in contracting and non-contracting skeletal muscle fibres. J Physiol. 1981 May;314:565–593. doi: 10.1113/jphysiol.1981.sp013725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hosey M. M., Lazdunski M. Calcium channels: molecular pharmacology, structure and regulation. J Membr Biol. 1988 Sep;104(2):81–105. doi: 10.1007/BF01870922. [DOI] [PubMed] [Google Scholar]
  17. Hui C. S., Chandler W. K. Intramembranous charge movement in frog cut twitch fibers mounted in a double vaseline-gap chamber. J Gen Physiol. 1990 Aug;96(2):257–297. doi: 10.1085/jgp.96.2.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Irving M., Maylie J., Sizto N. L., Chandler W. K. Intrinsic optical and passive electrical properties of cut frog twitch fibers. J Gen Physiol. 1987 Jan;89(1):1–40. doi: 10.1085/jgp.89.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kovacs L., Rios E., Schneider M. F. Measurement and modification of free calcium transients in frog skeletal muscle fibres by a metallochromic indicator dye. J Physiol. 1983 Oct;343:161–196. doi: 10.1113/jphysiol.1983.sp014887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lamb G. D. Asymmetric charge movement in contracting muscle fibres in the rabbit. J Physiol. 1986 Jul;376:63–83. doi: 10.1113/jphysiol.1986.sp016142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lamb G. D. Components of charge movement in rabbit skeletal muscle: the effect of tetracaine and nifedipine. J Physiol. 1986 Jul;376:85–100. doi: 10.1113/jphysiol.1986.sp016143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lamb G. D., Walsh T. Calcium currents, charge movement and dihydropyridine binding in fast- and slow-twitch muscles of rat and rabbit. J Physiol. 1987 Dec;393:595–617. doi: 10.1113/jphysiol.1987.sp016843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mejía-Alvarez R., Fill M., Stefani E. Voltage-dependent inactivation of T-tubular skeletal calcium channels in planar lipid bilayers. J Gen Physiol. 1991 Feb;97(2):393–412. doi: 10.1085/jgp.97.2.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Narahashi T. Chemicals as tools in the study of excitable membranes. Physiol Rev. 1974 Oct;54(4):813–889. doi: 10.1152/physrev.1974.54.4.813. [DOI] [PubMed] [Google Scholar]
  25. Schneider M. F., Chandler W. K. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature. 1973 Mar 23;242(5395):244–246. doi: 10.1038/242244a0. [DOI] [PubMed] [Google Scholar]
  26. Simon B. J., Beam K. G. Slow charge movement in mammalian skeletal muscle. J Gen Physiol. 1985 Jan;85(1):1–19. doi: 10.1085/jgp.85.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sánchez J. A., Stefani E. Kinetic properties of calcium channels of twitch muscle fibres of the frog. J Physiol. 1983 Apr;337:1–17. doi: 10.1113/jphysiol.1983.sp014607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tanabe T., Beam K. G., Powell J. A., Numa S. Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature. 1988 Nov 10;336(6195):134–139. doi: 10.1038/336134a0. [DOI] [PubMed] [Google Scholar]
  29. Uchitel O. D., Appel S. H., Crawford F., Sczcupak L. Immunoglobulins from amyotrophic lateral sclerosis patients enhance spontaneous transmitter release from motor-nerve terminals. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7371–7374. doi: 10.1073/pnas.85.19.7371. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES