Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2025 Jan 28;81(Pt 2):172–176. doi: 10.1107/S205698902500060X

Synthesis and crystal structure of 5,10-bis­(phenyl­sulfon­yl)tetra­hydro­dibenzo­penta­lene

Toshiki Sakami a, Hikaru Watanabe a, Takuma Sato a, Yasuhiro Okuda b, Kan Wakamatsu c, Haruo Akashi d, Akihiro Orita b,*
Editor: Y Ozawae
PMCID: PMC11799786  PMID: 39927386

The structure of a curved 6–5–5–6 fused-ring system, with two benzene rings attached at both termini and a pair of phenyl­sulfonyl groups bonded to the two five-membered rings, is described.

Keywords: crystal structure, transannulation, ethenyl sulfone, hy­dro­genation, tetra­hydro­dibenzo­penta­lene

Abstract

5,10-Bis(phenyl­sulfon­yl)tetra­hydro­dibenzo­penta­lene, C28H22O4S2, 1, was suc­cessfully synthesized via the photocatalyst-promoted hy­dro­genative transannulation of di­sulfonyl­cyclo­octa­tetra­ene, 2, using perylene as the photocatalyst in the presence of (i-Pr)2NEt under UV-light irradiation (398 nm, 30 W). In this reaction, the cyclo­octa­tetra­ene moiety of 2 underwent hy­dro­genative transannulation, yielding 1. Single-crystal X-ray analysis revealed that both enanti­omers of 1 are arranged alternately along the a axis of the unit cell. The structure features a wide V-shaped motif consisting of 6–5–5–6 fused rings, with a dihedral angle of approximately 97.2° between the planes of the terminal phenyl­ene rings. Additionally, a pair of phenyl­sulfonyl groups were observed at the exo positions relative to the V-shaped array.

1. Chemical context

Acenes have garnered significant attention for their strong inter­actions with single-wall carbon nanotubes (SWCNTs), which led to the formation of acene–SWCNT com­posites. For example, ferrocenoyl-substituted acetyl­enic anthracene (Watanabe et al., 2023) and anthrylene nano tweezers (Marquis et al., 2009) have been utilized to fabricate anthracene derivative–SWCNT com­posites. In both cases, multi-adsorption effects on the SWCNT surface play a pivotal role; in the former, co-operative adsorption of ferrocenoyl and acetyl­enic anthrylene moieties is essential, while in the latter, dual adsorption of V-shaped anthrylenes drives com­posite formation. The nano tweezers consist of a pair of anthrylenes connected by methyl­ene hinges. Inspired by this, we envisioned the synthesis of a new class of nano tweezer, i.e.1 (see Scheme), featuring a pair of aromatic rings connected by a five-membered ring-fused hinge.1.

To synthesize com­pound 1, we employed our photocatalyst-assisted hy­dro­genative reduction protocol on 5,11-bis­(phenyl­sulfon­yl)dibenzo[a,e]cyclo­octa­tetra­ene (2), using a perylene photocatalyst under UV/visible-light irradiation (Watanabe et al., 2020, 2021, 2024) (Fig. 1). In this reaction, we anti­cipated that the in-situ-formed anion radical 2. would undergo transannulation to yield 1. Notably, we have previously reported the anionic transannulation of 5,6,11,12-tetra­dehydro­dibenzo[a,e]cyclo­octa­tetra­ene, which afforded the corresponding 6–5–5–6 cyclic product dibenzo­penta­lene (Xu et al., 2014). The photocatalyst-promoted hy­dro­genative transannulation of 2 proceeded successfully, yielding the nano tweezer 5,10-bis­(phenyl­sulfon­yl)tetra­hydro­dibenzo­penta­lene (1). In this reaction, the cyclo­octa­tetra­ene moiety of 2 was transformed into the desired five-membered ring-fused hinge.

Figure 1.

Figure 1

Synthetic route for the preparation of 1.

This study presents the synthesis of 5,10-bis­(phenyl­sulfon­yl)tetra­hydro­dibenzo­penta­lene (1), a five-membered ring-fused nano-tweezer com­pound, along with its single-crystal X-ray structure and a plausible mechanism for the perylene/UV-light-promoted hy­dro­genative transannulation of 2.

2. Structural commentary

The core structure of 1 is a fused 6–5–5–6-membered ring system, in which two phenyl­ene rings are connected by a five-membered-ring hinge array (Fig. 2). The dihedral angle between the planes of the terminal phenyl­ene rings is ca 97.2°. Phenyl­sulfonyl groups are located at the outside of the V-shaped fused-ring motif, leaning over the five-membered rings. The C1–C5/C16 (C8–C12/C13) phenyl­ene ring shows identical aromatic bond lengths (1.38–1.40 Å). In the hinge ring C6–C8/C13/C14, the C6—C7 and C6—C14 single bonds are somewhat longer than the C7—C8 and C13—C14 bonds, respectively: 1.547 (2) and 1.563 (2) Å versus 1.508 (3) and 1.514 (2) Å. The bond angles around the Csp2 atoms in the hinge ring [C7—C8—C13 = 110.70 (15)° and C8—C13—C14 = 111.38 (15)°] are rather larger than those around the Csp3 atoms [C6—C7—C8 = 103.59 (14)°, C7—C6—C14 = 106.00 (14)° and C6—C14—C13 = 102.05 (14)°].Similar features are observed in the other hinge ring C14–C16/C5/C6.

Figure 2.

Figure 2

The mol­ecular structure of (E,E)-1, with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, 1 forms a column diagonally in the a-axis direction with a mol­ecular distance of 8.84 Å (Fig. 3). In the columnar structure of 1, a pair of [(S)-C7, (S)-C15] and [(R)-C7, (R)-C15] enanti­omers are arranged alternately in the same direction, with the mid-points of the C6—C14 bonds aligned. The shortest inter­molecular contact is between the C8–C13 phenyl­ene ring and the C23′–C28′ phenyl­sulfonyl ring. The inter­molecular centroid–centroid distance between the two benzene rings is 3.86 Å, and this value is somewhat longer than conventional π–π stacking (Banerjee et al., 2019).

Figure 3.

Figure 3

A partial packing plot of 1, showing the linear alternating alignment of (S,S)- and (R,R)- isomers and the shortest inter­molecular contacts (blue lines).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.45, November 2023, with updates to March 2024; Groom et al., 2016) indicates that 5,10-bis­(phenyl­sulfon­yl)tetra­hydro­dibenzo­penta­lene, 1, is unprecedented. However, a related 5,10-bis­(sulfonimidoyl­meth­yl)tetra­hydro­dibenzo­pen­ta­lene derivative has been reported (CSD refcode ATUHIJ; Hermann et al., 2021). The crystal structures of analogous 6–5–5–6 fused rings with carbon substituents at both the 5 and 10 positions are common, with more than 20 examples available, including the 5,10-diphenyl derivative (e.g. MAMYEI; Wössner et al., 2022).

5. Synthesis and crystallization

5,10-Bis(phenyl­sulfon­yl)tetra­hydro­dibenzo­penta­lene, 1, was successfully synthesized via photocatalyst perylene-promoted hy­dro­genative transannulation of di­sulfonyl­cyclo­octa­tetra­ene, 2, in the presence of (i-Pr)2NEt under irradiation of UV light (398 nm, 30 W). Starting com­pound 2 was synthesized from the cyclic dimerization of 2-formyl­phenyl­methyl phenyl sul­fone according to the reported procedure of Xu et al. (2014).

To a round-bottomed flask charged with a magnetic stirrer bar were added 2 (121 mg, 0.25 mmol), perylene (3.15 mg, 12.5 µmol), (i-Pr)2NEt (0.35 ml, 2.0 mmol) and MeCN (2.5 ml). The flask was placed in a glass water bath surrounded by UV LED strip lighting, and the mixture was irradiated with UV light for 9 h. During the photoreaction, the tem­per­a­ture of the bath was kept at 50–55 °C because of heat radiation from the photoreactor. After com­pletion of the reaction, the mix­ture was evaporated and the crude product was purified by flash chromatography on silica gel (hexa­ne/EtOAc, 7:3 v/v) to afford the desired product 1 (yield: 104 mg, 0.215 mmol, 86%).

Analysis for 1: white powder; m.p. 237–238 °C; 1H NMR (CDCl3, 400 MHz, room tem­per­a­ture): δ 3.67 (s, 2H), 4.62 (s, 2H), 7.15 (d, 2H, J = 7.8 Hz), 7.23–7.27 (m, 2H), 7.33 (t, 2H, J = 7.4 Hz), 7.40 (d, 2H, J = 7.8 Hz), 7.44–7.49 (m, 8H), 7.66–7.70 (m, 2H); 13C{1H} NMR (CDCl3, 101 MHz, room tem­per­a­ture): δ 50.4, 77.1, 124.4, 127.8, 128.5, 129.0, 129.4, 130.5, 133.5, 134.2, 136.6, 145.0. HRMS (MALDI–TOF) m/z [M + Na]+ calculated for C28H22NaO4S2 509.0857; found 509.0807.

A crystal of 1 suitable for X-ray diffraction was obtained from the slow evaporation of an AcOEt solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were refined using a riding model, with d(C—H) = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic H, and 0.98 Å, Uiso(H) = 1.2Ueq(C) for CH.

Table 1. Experimental details.

Crystal data
Chemical formula C28H22O4S2
M r 486.57
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 293
a, b, c (Å) 17.2598 (3), 10.0898 (1), 13.1810 (2)
V3) 2295.44 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.15 × 0.1 × 0.05
 
Data collection
Diffractometer Rigaku VariMax Saturn724
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019)
Tmin, Tmax 0.830, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 42446, 7150, 6863
R int 0.036
(sin θ/λ)max−1) 0.736
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.088, 1.13
No. of reflections 7150
No. of parameters 307
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.39
Absolute structure Flack x determined using 3042 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013)
Absolute structure parameter −0.048 (15)

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXT2018 (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

7. Reaction mechanism

7.1. Mechanistic insights into hy­dro­genative transannulation via DFT calculations

Density functional theory (DFT) calculations [B3LYP/6-31+G(d) with the IEFPCM solvent model in MeCN] were performed to elucidate the mechanism of hy­dro­genative transannulation. The results suggest that the reaction proceeds primarily via the anion radical 2. through an anion radical-mediated mechanism (Fig. 4, route 1).

Figure 4.

Figure 4

Mechanistic pathways for the transformation of 2 to 1.

The process begins with photoexcitation of the perylene photocatalyst upon UV LED irradiation (Fig. 5). The excited-state perylene accepts an electron from the sacrificial reductant (i-Pr)2NEt, generating the anion radical (perylene).. This highly reductive species transfers an electron to 2, forming the anion radical 2., which subsequently undergoes transannulation to yield 1. This occurs via consecutive double protonation and one-electron reduction of the inter­mediate anion radical 3. (Fig. 4, route 1). Although an alternative pathway involving the formation of the anion radical (4 + PhSO2).via S—C bond elongation (route 1′) is also possible, its relatively high activation energy renders it less favourable.

Figure 5.

Figure 5

Mechanism of the generation of the anion radical 2.− by a photoexcited perylene photocatalyst.

Another proposed pathway involves the radical inter­mediate 5., generated by protonation of 2.. This radical could theoretically lead to 1via the inter­mediate 6. through radical transannulation, protonation and single-electron reduction (route 2). However, DFT calculations indicate that rapid elimination of PhSO2. from 5. is more likely, yielding the elimination product 7. Similarly, the anion 5, another potential precursor to 6, likely undergoes rapid elimination of PhSO2, also forming 7.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698902500060X/ox2012sup1.cif

e-81-00172-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902500060X/ox2012Isup2.hkl

e-81-00172-Isup2.hkl (568.1KB, hkl)

CCDC reference: 2243325

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Okayama University of Science Research Instruments Center for the measurements by 400 MHz NMR spectroscopy (JNM-ECS400 and JNM-ECZ400S), MALDI–TOF MS (autoflex speed) and single-crystal X-ray analysis (Rigaku VariMax Saturn724 diffractometer).

supplementary crystallographic information

8,16-Bis(benzenesulfonyl)tetracyclo[7.7.0.02,7.010,15]hexadeca-2,4,6,10(15),11,13-hexaene . Crystal data

C28H22O4S2 Dx = 1.408 Mg m3
Mr = 486.57 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21 Cell parameters from 35175 reflections
a = 17.2598 (3) Å θ = 2.3–31.6°
b = 10.0898 (1) Å µ = 0.27 mm1
c = 13.1810 (2) Å T = 293 K
V = 2295.44 (6) Å3 Plate, yellow
Z = 4 0.15 × 0.1 × 0.05 mm
F(000) = 1016

8,16-Bis(benzenesulfonyl)tetracyclo[7.7.0.02,7.010,15]hexadeca-2,4,6,10(15),11,13-hexaene . Data collection

Rigaku VariMax Saturn724 diffractometer 7150 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 6863 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.036
ω scans θmax = 31.5°, θmin = 2.3°
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2019) h = −24→25
Tmin = 0.830, Tmax = 1.000 k = −14→14
42446 measured reflections l = −18→18

8,16-Bis(benzenesulfonyl)tetracyclo[7.7.0.02,7.010,15]hexadeca-2,4,6,10(15),11,13-hexaene . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.1545P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088 (Δ/σ)max = 0.001
S = 1.13 Δρmax = 0.46 e Å3
7150 reflections Δρmin = −0.39 e Å3
307 parameters Absolute structure: Flack x determined using 3042 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: −0.048 (15)
Primary atom site location: dual

8,16-Bis(benzenesulfonyl)tetracyclo[7.7.0.02,7.010,15]hexadeca-2,4,6,10(15),11,13-hexaene . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

8,16-Bis(benzenesulfonyl)tetracyclo[7.7.0.02,7.010,15]hexadeca-2,4,6,10(15),11,13-hexaene . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.65385 (3) 0.57943 (4) 0.64924 (4) 0.01544 (10)
S2 0.63855 (3) 0.13233 (5) 0.35409 (3) 0.01764 (10)
O1 0.69190 (9) 0.70159 (14) 0.67785 (11) 0.0215 (3)
O2 0.60389 (9) 0.51442 (16) 0.72176 (12) 0.0228 (3)
O3 0.60283 (9) 0.21632 (17) 0.27880 (12) 0.0243 (3)
O4 0.66469 (9) 0.00191 (15) 0.32373 (13) 0.0242 (3)
C1 0.80081 (11) 0.02918 (18) 0.49055 (17) 0.0204 (4)
H1 0.810443 −0.015390 0.430098 0.024*
C2 0.82842 (13) −0.01963 (19) 0.58237 (19) 0.0236 (4)
H2 0.857029 −0.097732 0.583286 0.028*
C3 0.81388 (12) 0.0466 (2) 0.67250 (17) 0.0227 (4)
H3 0.832998 0.012462 0.733082 0.027*
C4 0.77070 (11) 0.16425 (19) 0.67352 (15) 0.0187 (4)
H4 0.760981 0.208656 0.734024 0.022*
C5 0.74280 (10) 0.21293 (17) 0.58196 (14) 0.0145 (3)
C6 0.69361 (10) 0.33572 (18) 0.56404 (13) 0.0135 (3)
H6 0.639491 0.321598 0.583770 0.016*
C7 0.72795 (10) 0.46170 (18) 0.61359 (14) 0.0134 (3)
H7 0.757931 0.436692 0.673761 0.016*
C8 0.78194 (10) 0.51514 (17) 0.53349 (14) 0.0136 (3)
C9 0.83936 (11) 0.61022 (19) 0.54509 (15) 0.0172 (3)
H9 0.847046 0.652213 0.607083 0.021*
C10 0.88527 (12) 0.64112 (19) 0.46118 (16) 0.0205 (4)
H10 0.923416 0.705802 0.466837 0.025*
C11 0.87461 (12) 0.57648 (19) 0.36968 (16) 0.0211 (4)
H11 0.906375 0.597215 0.314948 0.025*
C12 0.81676 (11) 0.48033 (18) 0.35813 (15) 0.0172 (3)
H12 0.810090 0.436702 0.296592 0.021*
C13 0.76950 (10) 0.45154 (17) 0.44072 (13) 0.0131 (3)
C14 0.70237 (10) 0.35534 (17) 0.44694 (13) 0.0133 (3)
H14 0.655202 0.391959 0.416477 0.016*
C15 0.72236 (10) 0.21799 (17) 0.40319 (14) 0.0149 (3)
H15 0.760873 0.227967 0.349097 0.018*
C16 0.75839 (10) 0.14641 (18) 0.49152 (15) 0.0156 (3)
C17 0.60164 (10) 0.60785 (18) 0.53663 (14) 0.0153 (3)
C18 0.53457 (11) 0.53499 (19) 0.51733 (15) 0.0181 (3)
H18 0.514311 0.478352 0.566271 0.022*
C19 0.49848 (11) 0.5487 (2) 0.42331 (17) 0.0203 (4)
H19 0.454400 0.499324 0.408476 0.024*
C20 0.52824 (11) 0.63586 (19) 0.35179 (17) 0.0211 (4)
H20 0.504127 0.644075 0.289013 0.025*
C21 0.59374 (12) 0.71103 (19) 0.37309 (16) 0.0213 (4)
H21 0.612296 0.771159 0.325449 0.026*
C22 0.63150 (11) 0.69642 (18) 0.46544 (15) 0.0180 (3)
H22 0.676009 0.744952 0.479594 0.022*
C23 0.57343 (11) 0.11531 (19) 0.45694 (15) 0.0181 (4)
C24 0.58859 (11) 0.02218 (19) 0.53314 (16) 0.0209 (4)
H24 0.632003 −0.032214 0.529645 0.025*
C25 0.53722 (13) 0.0128 (2) 0.61426 (17) 0.0257 (4)
H25 0.545787 −0.049515 0.665012 0.031*
C26 0.47331 (13) 0.0959 (2) 0.61982 (19) 0.0279 (5)
H26 0.439990 0.090482 0.675119 0.033*
C27 0.45880 (12) 0.1873 (2) 0.5432 (2) 0.0272 (4)
H27 0.415572 0.242099 0.547105 0.033*
C28 0.50857 (11) 0.1971 (2) 0.46074 (17) 0.0228 (4)
H28 0.498734 0.257398 0.408924 0.027*

8,16-Bis(benzenesulfonyl)tetracyclo[7.7.0.02,7.010,15]hexadeca-2,4,6,10(15),11,13-hexaene . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01851 (18) 0.01647 (19) 0.01135 (19) 0.00111 (15) 0.00189 (16) −0.00361 (16)
S2 0.01760 (18) 0.0206 (2) 0.0147 (2) −0.00383 (15) 0.00205 (17) −0.00729 (18)
O1 0.0270 (7) 0.0187 (6) 0.0190 (7) 0.0009 (5) −0.0016 (6) −0.0079 (5)
O2 0.0245 (7) 0.0286 (7) 0.0152 (7) 0.0023 (6) 0.0086 (5) 0.0005 (6)
O3 0.0242 (7) 0.0331 (8) 0.0156 (7) −0.0028 (6) −0.0030 (5) −0.0040 (6)
O4 0.0249 (7) 0.0230 (7) 0.0248 (8) −0.0052 (6) 0.0073 (6) −0.0135 (6)
C1 0.0180 (8) 0.0162 (8) 0.0270 (10) −0.0014 (6) 0.0045 (7) −0.0050 (7)
C2 0.0224 (9) 0.0150 (8) 0.0334 (11) 0.0013 (7) 0.0025 (8) 0.0015 (8)
C3 0.0241 (9) 0.0195 (8) 0.0245 (10) −0.0002 (7) −0.0006 (8) 0.0059 (7)
C4 0.0229 (8) 0.0173 (8) 0.0159 (9) −0.0018 (7) 0.0019 (7) 0.0029 (6)
C5 0.0154 (7) 0.0134 (7) 0.0148 (8) −0.0015 (6) 0.0020 (6) 0.0002 (6)
C6 0.0147 (7) 0.0146 (7) 0.0112 (8) −0.0007 (6) 0.0015 (6) −0.0016 (6)
C7 0.0153 (7) 0.0143 (7) 0.0105 (7) −0.0005 (6) 0.0002 (6) −0.0018 (6)
C8 0.0150 (7) 0.0132 (7) 0.0125 (8) 0.0009 (6) 0.0012 (6) 0.0000 (6)
C9 0.0207 (8) 0.0146 (7) 0.0163 (8) −0.0025 (6) 0.0002 (7) −0.0017 (7)
C10 0.0226 (8) 0.0168 (8) 0.0220 (9) −0.0062 (7) 0.0030 (7) 0.0011 (7)
C11 0.0236 (9) 0.0220 (9) 0.0177 (9) −0.0036 (7) 0.0056 (7) 0.0033 (7)
C12 0.0218 (8) 0.0183 (7) 0.0114 (7) −0.0007 (6) 0.0018 (7) 0.0012 (7)
C13 0.0149 (7) 0.0129 (7) 0.0115 (8) 0.0002 (6) 0.0005 (6) −0.0006 (6)
C14 0.0147 (7) 0.0147 (7) 0.0106 (7) −0.0006 (6) 0.0000 (6) −0.0028 (6)
C15 0.0157 (7) 0.0162 (8) 0.0128 (8) −0.0027 (6) 0.0020 (6) −0.0042 (6)
C16 0.0140 (7) 0.0149 (7) 0.0179 (9) −0.0018 (6) 0.0017 (6) −0.0023 (6)
C17 0.0158 (7) 0.0152 (7) 0.0150 (8) 0.0023 (6) 0.0000 (6) −0.0029 (6)
C18 0.0167 (8) 0.0180 (8) 0.0194 (9) −0.0002 (6) 0.0036 (7) −0.0009 (7)
C19 0.0166 (8) 0.0200 (8) 0.0243 (10) 0.0013 (7) −0.0022 (7) −0.0030 (7)
C20 0.0211 (8) 0.0229 (9) 0.0193 (9) 0.0056 (7) −0.0028 (8) −0.0006 (7)
C21 0.0249 (9) 0.0188 (8) 0.0202 (9) 0.0010 (7) 0.0012 (7) 0.0034 (7)
C22 0.0189 (8) 0.0138 (7) 0.0212 (9) 0.0004 (6) 0.0011 (7) −0.0008 (7)
C23 0.0164 (8) 0.0199 (8) 0.0181 (9) −0.0052 (6) 0.0037 (7) −0.0080 (7)
C24 0.0198 (8) 0.0201 (8) 0.0227 (10) −0.0032 (7) 0.0031 (7) −0.0071 (7)
C25 0.0282 (10) 0.0283 (10) 0.0205 (9) −0.0095 (8) 0.0044 (8) −0.0046 (8)
C26 0.0241 (9) 0.0334 (11) 0.0262 (10) −0.0104 (8) 0.0101 (8) −0.0128 (9)
C27 0.0187 (8) 0.0280 (10) 0.0348 (11) −0.0027 (7) 0.0058 (8) −0.0116 (9)
C28 0.0180 (8) 0.0216 (8) 0.0288 (11) −0.0032 (7) 0.0007 (8) −0.0065 (8)

8,16-Bis(benzenesulfonyl)tetracyclo[7.7.0.02,7.010,15]hexadeca-2,4,6,10(15),11,13-hexaene . Geometric parameters (Å, º)

S1—O1 1.4467 (15) C11—C12 1.400 (3)
S1—O2 1.4448 (15) C12—H12 0.9300
S1—C7 1.8077 (18) C12—C13 1.391 (2)
S1—C17 1.7600 (19) C13—C14 1.514 (2)
S2—O3 1.4433 (17) C14—H14 0.9800
S2—O4 1.4475 (15) C14—C15 1.540 (2)
S2—C15 1.8051 (18) C15—H15 0.9800
S2—C23 1.7693 (19) C15—C16 1.505 (3)
C1—H1 0.9300 C17—C18 1.395 (3)
C1—C2 1.391 (3) C17—C22 1.394 (3)
C1—C16 1.391 (3) C18—H18 0.9300
C2—H2 0.9300 C18—C19 1.394 (3)
C2—C3 1.386 (3) C19—H19 0.9300
C3—H3 0.9300 C19—C20 1.388 (3)
C3—C4 1.402 (3) C20—H20 0.9300
C4—H4 0.9300 C20—C21 1.390 (3)
C4—C5 1.389 (3) C21—H21 0.9300
C5—C6 1.520 (2) C21—C22 1.388 (3)
C5—C16 1.394 (2) C22—H22 0.9300
C6—H6 0.9800 C23—C24 1.400 (3)
C6—C7 1.547 (2) C23—C28 1.392 (3)
C6—C14 1.563 (2) C24—H24 0.9300
C7—H7 0.9800 C24—C25 1.392 (3)
C7—C8 1.508 (3) C25—H25 0.9300
C8—C9 1.388 (2) C25—C26 1.388 (3)
C8—C13 1.398 (2) C26—H26 0.9300
C9—H9 0.9300 C26—C27 1.391 (4)
C9—C10 1.396 (3) C27—H27 0.9300
C10—H10 0.9300 C27—C28 1.388 (3)
C10—C11 1.383 (3) C28—H28 0.9300
C11—H11 0.9300
O1—S1—C7 107.84 (9) C8—C13—C14 111.38 (15)
O1—S1—C17 108.27 (9) C12—C13—C8 119.92 (16)
O2—S1—O1 119.03 (9) C12—C13—C14 128.70 (16)
O2—S1—C7 107.21 (9) C6—C14—H14 111.8
O2—S1—C17 109.05 (9) C13—C14—C6 102.05 (14)
C17—S1—C7 104.48 (9) C13—C14—H14 111.8
O3—S2—O4 118.48 (10) C13—C14—C15 112.65 (14)
O3—S2—C15 107.92 (9) C15—C14—C6 106.10 (14)
O3—S2—C23 108.21 (10) C15—C14—H14 111.8
O4—S2—C15 106.53 (9) S2—C15—H15 109.4
O4—S2—C23 108.76 (9) C14—C15—S2 112.68 (12)
C23—S2—C15 106.31 (9) C14—C15—H15 109.4
C2—C1—H1 120.9 C16—C15—S2 112.26 (12)
C2—C1—C16 118.26 (19) C16—C15—C14 103.58 (14)
C16—C1—H1 120.9 C16—C15—H15 109.4
C1—C2—H2 119.6 C1—C16—C5 121.24 (18)
C3—C2—C1 120.88 (18) C1—C16—C15 128.22 (18)
C3—C2—H2 119.6 C5—C16—C15 110.53 (15)
C2—C3—H3 119.6 C18—C17—S1 119.53 (15)
C2—C3—C4 120.8 (2) C22—C17—S1 118.87 (14)
C4—C3—H3 119.6 C22—C17—C18 121.45 (18)
C3—C4—H4 120.8 C17—C18—H18 120.6
C5—C4—C3 118.38 (18) C19—C18—C17 118.74 (18)
C5—C4—H4 120.8 C19—C18—H18 120.6
C4—C5—C6 128.07 (17) C18—C19—H19 120.0
C4—C5—C16 120.38 (17) C20—C19—C18 120.08 (18)
C16—C5—C6 111.55 (16) C20—C19—H19 120.0
C5—C6—H6 111.9 C19—C20—H20 119.7
C5—C6—C7 112.95 (14) C19—C20—C21 120.6 (2)
C5—C6—C14 101.69 (14) C21—C20—H20 119.7
C7—C6—H6 111.9 C20—C21—H21 120.0
C7—C6—C14 106.00 (14) C22—C21—C20 120.05 (19)
C14—C6—H6 111.9 C22—C21—H21 120.0
S1—C7—H7 109.4 C17—C22—H22 120.5
C6—C7—S1 112.24 (12) C21—C22—C17 118.98 (17)
C6—C7—H7 109.4 C21—C22—H22 120.5
C8—C7—S1 112.60 (12) C24—C23—S2 119.74 (15)
C8—C7—C6 103.59 (14) C28—C23—S2 118.75 (16)
C8—C7—H7 109.4 C28—C23—C24 121.51 (19)
C9—C8—C7 127.69 (17) C23—C24—H24 120.7
C9—C8—C13 121.56 (17) C25—C24—C23 118.52 (19)
C13—C8—C7 110.70 (15) C25—C24—H24 120.7
C8—C9—H9 120.9 C24—C25—H25 119.8
C8—C9—C10 118.20 (18) C26—C25—C24 120.4 (2)
C10—C9—H9 120.9 C26—C25—H25 119.8
C9—C10—H10 119.7 C25—C26—H26 119.8
C11—C10—C9 120.66 (18) C25—C26—C27 120.4 (2)
C11—C10—H10 119.7 C27—C26—H26 119.8
C10—C11—H11 119.5 C26—C27—H27 119.9
C10—C11—C12 121.08 (19) C28—C27—C26 120.3 (2)
C12—C11—H11 119.5 C28—C27—H27 119.9
C11—C12—H12 120.7 C23—C28—H28 120.5
C13—C12—C11 118.53 (18) C27—C28—C23 118.9 (2)
C13—C12—H12 120.7 C27—C28—H28 120.5
S1—C7—C8—C9 73.1 (2) C7—S1—C17—C22 −80.77 (16)
S1—C7—C8—C13 −109.25 (15) C7—C6—C14—C13 24.61 (17)
S1—C17—C18—C19 −173.37 (14) C7—C6—C14—C15 142.74 (13)
S1—C17—C22—C21 174.87 (15) C7—C8—C9—C10 177.19 (18)
S2—C15—C16—C1 72.1 (2) C7—C8—C13—C12 −175.93 (16)
S2—C15—C16—C5 −106.73 (15) C7—C8—C13—C14 3.8 (2)
S2—C23—C24—C25 178.68 (15) C8—C9—C10—C11 −1.3 (3)
S2—C23—C28—C27 −177.74 (15) C8—C13—C14—C6 −17.84 (18)
O1—S1—C7—C6 −170.12 (12) C8—C13—C14—C15 −131.19 (16)
O1—S1—C7—C8 −53.69 (15) C9—C8—C13—C12 1.9 (3)
O1—S1—C17—C18 −150.48 (15) C9—C8—C13—C14 −178.38 (16)
O1—S1—C17—C22 33.97 (17) C9—C10—C11—C12 1.2 (3)
O2—S1—C7—C6 60.58 (15) C10—C11—C12—C13 0.5 (3)
O2—S1—C7—C8 177.01 (13) C11—C12—C13—C8 −2.0 (3)
O2—S1—C17—C18 −19.58 (17) C11—C12—C13—C14 178.35 (18)
O2—S1—C17—C22 164.87 (14) C12—C13—C14—C6 161.85 (18)
O3—S2—C15—C14 56.45 (15) C12—C13—C14—C15 48.5 (2)
O3—S2—C15—C16 172.94 (12) C13—C8—C9—C10 −0.2 (3)
O3—S2—C23—C24 169.95 (15) C13—C14—C15—S2 −152.10 (13)
O3—S2—C23—C28 −11.08 (18) C13—C14—C15—C16 86.35 (17)
O4—S2—C15—C14 −175.33 (13) C14—C6—C7—S1 98.89 (14)
O4—S2—C15—C16 −58.84 (15) C14—C6—C7—C8 −22.85 (17)
O4—S2—C23—C24 40.02 (18) C14—C15—C16—C1 −166.03 (18)
O4—S2—C23—C28 −141.01 (15) C14—C15—C16—C5 15.10 (19)
C1—C2—C3—C4 0.2 (3) C15—S2—C23—C24 −74.34 (17)
C2—C1—C16—C5 −0.9 (3) C15—S2—C23—C28 104.63 (16)
C2—C1—C16—C15 −179.62 (18) C16—C1—C2—C3 0.2 (3)
C2—C3—C4—C5 0.0 (3) C16—C5—C6—C7 −129.03 (16)
C3—C4—C5—C6 178.56 (17) C16—C5—C6—C14 −15.86 (18)
C3—C4—C5—C16 −0.7 (3) C17—S1—C7—C6 −55.08 (14)
C4—C5—C6—C7 51.7 (2) C17—S1—C7—C8 61.35 (14)
C4—C5—C6—C14 164.83 (18) C17—C18—C19—C20 −1.5 (3)
C4—C5—C16—C1 1.1 (3) C18—C17—C22—C21 −0.6 (3)
C4—C5—C16—C15 −179.91 (16) C18—C19—C20—C21 −0.5 (3)
C5—C6—C7—S1 −150.61 (13) C19—C20—C21—C22 2.0 (3)
C5—C6—C7—C8 87.66 (17) C20—C21—C22—C17 −1.4 (3)
C5—C6—C14—C13 −93.66 (15) C22—C17—C18—C19 2.1 (3)
C5—C6—C14—C15 24.47 (17) C23—S2—C15—C14 −59.45 (15)
C6—C5—C16—C1 −178.24 (16) C23—S2—C15—C16 57.04 (15)
C6—C5—C16—C15 0.7 (2) C23—C24—C25—C26 −1.1 (3)
C6—C7—C8—C9 −165.41 (17) C24—C23—C28—C27 1.2 (3)
C6—C7—C8—C13 12.25 (19) C24—C25—C26—C27 1.6 (3)
C6—C14—C15—S2 97.06 (15) C25—C26—C27—C28 −0.6 (3)
C6—C14—C15—C16 −24.50 (17) C26—C27—C28—C23 −0.8 (3)
C7—S1—C17—C18 94.78 (16) C28—C23—C24—C25 −0.3 (3)

Funding Statement

Funding for this research was provided by: the Grants-in-Aid for Scientific Research (JP23K04741 to AO; JP23K13755 to YO; 22J14995 to HW); OUS Research Project (OUS-RP-23-2 to AO; OUS-RP-24-7 to YO).

References

  1. Banerjee, A., Saha, A. & Saha, B. K. (2019). Cryst. Growth Des.19, 2245–2252.
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  3. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  4. Hermann, M., Wassy, D., Kohn, J., Seitz, P., Betschart, M. U., Grimme, S. & Esser, B. (2021). Angew. Chem. Int. Ed.60, 10680–10689. [DOI] [PMC free article] [PubMed]
  5. Marquis, R., Kulikiewicz, K., Lebedkin, S., Kappes, M. M., Mioskowski, C., Meunier, S. & Wagner, A. (2009). Chem. Eur. J.15, 11187–11196. [DOI] [PubMed]
  6. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  7. Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  8. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  9. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  10. Watanabe, H., Ekuni, K., Okuda, Y., Nakayama, R., Kawano, K., Iwanaga, T., Yamaguchi, A., Kiyomura, T., Miyake, H., Yamagami, M., Tajima, T., Kitai, T., Hayashi, T., Nishiyama, N., Kusano, Y., Kurata, H., Takaguchi, Y. & Orita, A. (2023). Bull. Chem. Soc. Jpn, 96, 57–64.
  11. Watanabe, H., Nakajima, K., Ekuni, K., Edagawa, R., Akagi, Y., Okuda, Y., Wakamatsu, K. & Orita, A. (2021). Synthesis, 53, 2984–2994.
  12. Watanabe, H., Sato, T., Sumita, M., Shiroyama, M., Sugawara, D., Tokuyama, T., Okuda, Y., Wakamatsu, K. & Orita, A. (2024). Bull. Chem. Soc. Jpn, 97, uoad013. [DOI] [PMC free article] [PubMed]
  13. Watanabe, H., Takemoto, M., Adachi, K., Okuda, Y., Dakegata, A., Fukuyama, T., Ryu, I., Wakamatsu, K. & Orita, A. (2020). Chem. Lett.49, 409–412.
  14. Wössner, J. S., Kohn, J., Wassy, D., Hermann, M., Grimme, S. & Esser, B. (2022). Org. Lett.24, 983–988. [DOI] [PubMed]
  15. Xu, F., Peng, L., Shinohara, K., Morita, T., Yoshida, S., Hosoya, T., Orita, A. & Otera, J. (2014). J. Org. Chem.79, 11592–11608. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698902500060X/ox2012sup1.cif

e-81-00172-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902500060X/ox2012Isup2.hkl

e-81-00172-Isup2.hkl (568.1KB, hkl)

CCDC reference: 2243325

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES