Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1992 Jan;445:639–658. doi: 10.1113/jphysiol.1992.sp018944

Calcium current variation between acutely isolated adult rat dorsal root ganglion neurons of different size.

R S Scroggs 1, A P Fox 1
PMCID: PMC1180002  PMID: 1323671

Abstract

1. The distribution of pharmacologically and/or biophysically unique Ca2+ current subtypes was studied in different diameter rat dorsal root ganglion (DRG) neuron cell bodies. DRG cells which fell into three diameter ranges, small (20-27 microns), medium (33-38 microns) and large (45-51 microns), were studied. T-type Ca2+ current was defined as low-threshold, rapidly inactivating current evoked by a weak test depolarization (-50 mV) from negative holding potentials (-80 to -100 mV), and which was sensitive to changes in holding potential. L-type Ca2+ current was defined as peak high-threshold Ca2+ current evoked from a holding potential of -60 mV and sensitive to blockade by 2 microM-nimodipine. N-type Ca2+ current was defined as peak high-threshold Ca2+ current evoked from a holding potential of -60 mV and sensitive to blockade by 0.9 microM-omega-conotoxin GVIA. 2. T-type Ca2+ currents were observed in small and medium diameter, but not in large diameter, DRG cell bodies. Large diameter DRG cell bodies had a small amount of low-threshold Ca2+ current but this current did not inactivate and was insensitive to a change in holding potential from -80 to -90 mV, and thus did not appear to be conducted through T-type Ca2+ channels. The T-type Ca2+ currents observed in medium diameter DRG cell bodies were considerably larger in amplitude (1-6 nA) than those observed in small diameter DRG cell bodies (100 pA-1 nA). This difference could not be accounted for by the difference in membrane surface area of small versus medium diameter DRG cell bodies. 3. The T-type Ca2+ currents observed in medium diameter DRG cells were sensitive to blockade by amiloride. Amiloride (500 microM) blocked 79.4 +/- 0.9% (mean +/- S.E.M.) of T-type Ca2+ current amplitude in six medium diameter DRG cell bodies which were held at -80 mV and depolarized to -50 or -40 mV. Amiloride (500 microM) failed to block high-threshold current in five medium diameter DRG cell bodies, indicating that it was specific for T-type Ca2+ current in these cells. 4. The percentage of peak whole-cell L-type Ca2+ current was significantly larger in small diameter DRG cell bodies (52.9 +/- 4.7% of total whole-cell Ca2+ current) than in medium diameter DRG cell bodies (6.6 +/- 3.9% of total whole-cell Ca2+ current) or large diameter DRG cell bodies (19.4 +/- 5.7% of total whole-cell Ca2+ current).(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
639

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aosaki T., Kasai H. Characterization of two kinds of high-voltage-activated Ca-channel currents in chick sensory neurons. Differential sensitivity to dihydropyridines and omega-conotoxin GVIA. Pflugers Arch. 1989 Jun;414(2):150–156. doi: 10.1007/BF00580957. [DOI] [PubMed] [Google Scholar]
  2. Billy A. J., Walters E. T. Long-term expansion and sensitization of mechanosensory receptive fields in Aplysia support an activity-dependent model of whole-cell sensory plasticity. J Neurosci. 1989 Apr;9(4):1254–1262. doi: 10.1523/JNEUROSCI.09-04-01254.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boland L. M., Dingledine R. Multiple components of both transient and sustained barium currents in a rat dorsal root ganglion cell line. J Physiol. 1990 Jan;420:223–245. doi: 10.1113/jphysiol.1990.sp017909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cohen C. J., McCarthy R. T. Nimodipine block of calcium channels in rat anterior pituitary cells. J Physiol. 1987 Jun;387:195–225. doi: 10.1113/jphysiol.1987.sp016570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dolphin A. C., Forda S. R., Scott R. H. Calcium-dependent currents in cultured rat dorsal root ganglion neurones are inhibited by an adenosine analogue. J Physiol. 1986 Apr;373:47–61. doi: 10.1113/jphysiol.1986.sp016034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fedulova S. A., Kostyuk P. G., Veselovsky N. S. Ionic mechanisms of electrical excitability in rat sensory neurons during postnatal ontogenesis. Neuroscience. 1991;41(1):303–309. doi: 10.1016/0306-4522(91)90219-e. [DOI] [PubMed] [Google Scholar]
  7. Fox A. P., Nowycky M. C., Tsien R. W. Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J Physiol. 1987 Dec;394:149–172. doi: 10.1113/jphysiol.1987.sp016864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fox A. P., Nowycky M. C., Tsien R. W. Single-channel recordings of three types of calcium channels in chick sensory neurones. J Physiol. 1987 Dec;394:173–200. doi: 10.1113/jphysiol.1987.sp016865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harper A. A., Lawson S. N. Conduction velocity is related to morphological cell type in rat dorsal root ganglion neurones. J Physiol. 1985 Feb;359:31–46. doi: 10.1113/jphysiol.1985.sp015573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hirning L. D., Fox A. P., McCleskey E. W., Olivera B. M., Thayer S. A., Miller R. J., Tsien R. W. Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. Science. 1988 Jan 1;239(4835):57–61. doi: 10.1126/science.2447647. [DOI] [PubMed] [Google Scholar]
  11. Johnson D. A., Pilar G. The release of acetylcholine from post-ganglionic cell bodies in response to depolarization. J Physiol. 1980 Feb;299:605–619. doi: 10.1113/jphysiol.1980.sp013144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kayahara T., Takimoto T., Sakashita S. Synaptic junctions in the cat spinal ganglion. Brain Res. 1981 Jul 20;216(2):277–290. doi: 10.1016/0006-8993(81)90130-x. [DOI] [PubMed] [Google Scholar]
  13. Klein M., Kandel E. R. Presynaptic modulation of voltage-dependent Ca2+ current: mechanism for behavioral sensitization in Aplysia californica. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3512–3516. doi: 10.1073/pnas.75.7.3512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Koerber H. R., Druzinsky R. E., Mendell L. M. Properties of somata of spinal dorsal root ganglion cells differ according to peripheral receptor innervated. J Neurophysiol. 1988 Nov;60(5):1584–1596. doi: 10.1152/jn.1988.60.5.1584. [DOI] [PubMed] [Google Scholar]
  15. Lester H. A., Snutch T. P., Leonard J. P., Nargeot J., Dascal N., Curtis B. M., Davidson N. Expression of mRNA encoding voltage-dependent Ca channels in Xenopus oocytes. Review and progress report. Ann N Y Acad Sci. 1989;560:174–182. doi: 10.1111/j.1749-6632.1989.tb24094.x. [DOI] [PubMed] [Google Scholar]
  16. Llinás R. R., Sugimori M., Cherksey B. Voltage-dependent calcium conductances in mammalian neurons. The P channel. Ann N Y Acad Sci. 1989;560:103–111. doi: 10.1111/j.1749-6632.1989.tb24084.x. [DOI] [PubMed] [Google Scholar]
  17. McCleskey E. W., Fox A. P., Feldman D. H., Cruz L. J., Olivera B. M., Tsien R. W., Yoshikami D. Omega-conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4327–4331. doi: 10.1073/pnas.84.12.4327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mogul D. J., Fox A. P. Evidence for multiple types of Ca2+ channels in acutely isolated hippocampal CA3 neurones of the guinea-pig. J Physiol. 1991 Feb;433:259–281. doi: 10.1113/jphysiol.1991.sp018425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mudge A. W., Leeman S. E., Fischbach G. D. Enkephalin inhibits release of substance P from sensory neurons in culture and decreases action potential duration. Proc Natl Acad Sci U S A. 1979 Jan;76(1):526–530. doi: 10.1073/pnas.76.1.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Plummer M. R., Logothetis D. E., Hess P. Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons. Neuron. 1989 May;2(5):1453–1463. doi: 10.1016/0896-6273(89)90191-8. [DOI] [PubMed] [Google Scholar]
  21. Schroeder J. E., Fischbach P. S., McCleskey E. W. T-type calcium channels: heterogeneous expression in rat sensory neurons and selective modulation by phorbol esters. J Neurosci. 1990 Mar;10(3):947–951. doi: 10.1523/JNEUROSCI.10-03-00947.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Scroggs R. S., Fox A. P. Distribution of dihydropyridine and omega-conotoxin-sensitive calcium currents in acutely isolated rat and frog sensory neuron somata: diameter-dependent L channel expression in frog. J Neurosci. 1991 May;11(5):1334–1346. doi: 10.1523/JNEUROSCI.11-05-01334.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Suetake K., Kojima H., Inanaga K., Koketsu K. Catecholamine is released from non-synaptic cell-soma membrane: histochemical evidence in bullfrog sympathetic ganglion cells. Brain Res. 1981 Feb 2;205(2):436–440. doi: 10.1016/0006-8993(81)90357-7. [DOI] [PubMed] [Google Scholar]
  24. Tang C. M., Presser F., Morad M. Amiloride selectively blocks the low threshold (T) calcium channel. Science. 1988 Apr 8;240(4849):213–215. doi: 10.1126/science.2451291. [DOI] [PubMed] [Google Scholar]
  25. Todorović S., Anderson E. G. 5-HT2 and 5-HT3 receptors mediate two distinct depolarizing responses in rat dorsal root ganglion neurons. Brain Res. 1990 Mar 12;511(1):71–79. doi: 10.1016/0006-8993(90)90226-2. [DOI] [PubMed] [Google Scholar]
  26. White G., Lovinger D. M., Weight F. F. Transient low-threshold Ca2+ current triggers burst firing through an afterdepolarizing potential in an adult mammalian neuron. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6802–6806. doi: 10.1073/pnas.86.17.6802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yaksh T. L., Hammond D. L. Peripheral and central substrates involved in the rostrad transmission of nociceptive information. Pain. 1982 May;13(1):1–85. doi: 10.1016/0304-3959(82)90067-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES