Abstract
1. The blood-cerebrospinal fluid (CSF) transfer of endogenous sheep albumin and several exogenous species of albumin has been investigated in different CSF compartments of the immature fetal sheep brain, at an early stage of development (60 days gestation, term is 150 days) when the CSF concentration of total protein is high. 2. There were marked differences in the steady-state CSF/plasma ratios for all species of albumin (including endogenous sheep albumin) between different CSF compartments. Ratios measured in the cisterna magna were significantly higher than those in the dorsal subarachnoid space, which in turn were higher than those in the lateral ventricles. The ratios for endogenous sheep albumin were (%; mean +/- S.E.M.): lateral ventricle (LV), 4.0 +/- 0.03; dorsal subarachnoid (DSA), 6.1 +/- 1.0; cisterna magna (CM), 13.7 +/- 0.8. 3. Three hours after I.V. injection, the CSF/plasma ratios for bovine albumin (LV, 2.0 +/- 0.2; DSA, 2.4 +/- 0.1; CM, 7.2 +/- 0.7%) were significantly lower than the ratio for endogenous sheep albumin in all three compartments. The ratios for human albumin (LV, 0.7 +/- 0.2; DSA, 1.0 +/- 0.2; CM, 3.9 +/- 0.4%) were significantly lower than those for bovine albumin. 4. In all three CSF compartments, the endogenous sheep albumin ratios were higher than would be expected on the basis of transfer by passive mechanisms. Conversely, steady-state CSF/plasma ratios for [3H]sucrose and [14C]inulin were consistent with passive transfer, and there were no differences between the ratios for these markers measured in each of the three CSF regions. 5. Goat albumin and [35S]sheep albumin ratios were not significantly different, 5 h after injection, from the endogenous sheep albumin levels in each of the three CSF compartments. 6. It is concluded that in the 60-day-old fetal sheep, all of the endogenous albumin in CSF is derived from the plasma by a specific transfer mechanism that can distinguish between different species of the same protein. There is also some evidence of a small passive component of blood-CSF albumin transfer. 7. Immunocytochemical evidence suggests that the route of transfer from blood to CSF is transcellular, through the choroid plexus epithelial cells. 8. Regional variations in albumin ratios are probably due to differences in specific transfer into each CSF compartment. This is reflected in a differential immunocytochemical staining for albumin in choroid plexus epithelial cells from different regions of the brain. 9. The results are discussed in terms of differences in albumin amino acid sequences, structural homologies, and transfer by a specific transcellular mechanism.
Full text
PDF






















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bito L. Z., Myers R. E. The ontogenesis of haematoencephalic cation transport processes in the rhesus monkey. J Physiol. 1970 May;208(1):153–170. doi: 10.1113/jphysiol.1970.sp009111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradbury M. W., Crowder J., Desai S., Reynolds J. M., Reynolds M., Saunders N. R. Electrolytes and water in the brain and cerebrospinal fluid of the foetal sheep and guinea-pig. J Physiol. 1972 Dec;227(2):591–610. doi: 10.1113/jphysiol.1972.sp010049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brown W. M., Dziegielewska K. M., Foreman R. C., Saunders N. R. Nucleotide and deduced amino acid sequence of sheep serum albumin. Nucleic Acids Res. 1989 Dec 25;17(24):10495–10495. doi: 10.1093/nar/17.24.10495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carter D. C., He X. M. Structure of human serum albumin. Science. 1990 Jul 20;249(4966):302–303. doi: 10.1126/science.2374930. [DOI] [PubMed] [Google Scholar]
- Cavanagh M. E., Cornelis M. E., Dziegielewska K. M., Evans C. A., Lorscheider F. L., Møllgård K., Reynolds M. L., Saunders N. R. Comparison of proteins in CSF of lateral and IVth ventricles during early development of fetal sheep. Brain Res. 1983 Dec;313(2):159–167. doi: 10.1016/0165-3806(83)90213-4. [DOI] [PubMed] [Google Scholar]
- Dugaiczyk A., Law S. W., Dennison O. E. Nucleotide sequence and the encoded amino acids of human serum albumin mRNA. Proc Natl Acad Sci U S A. 1982 Jan;79(1):71–75. doi: 10.1073/pnas.79.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dziegielewska K. M., Evans C. A., Fossan G., Lorscheider F. L., Malinowska D. H., Møllgård K., Reynolds M. L., Saunders N. R., Wilkinson S. Proteins in cerebrospinal fluid and plasma of fetal sheep during development. J Physiol. 1980 Mar;300:441–455. doi: 10.1113/jphysiol.1980.sp013171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dziegielewska K. M., Evans C. A., Lorscheider F. L., Malinowska D. H., Møllgård K., Reynolds M. L., Saunders N. R. Plasma proteins in fetal sheep brain: blood-brain barrier and intracerebral distribution. J Physiol. 1981 Sep;318:239–250. doi: 10.1113/jphysiol.1981.sp013861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dziegielewska K. M., Evans C. A., Malinowska D. H., Møllgård K., Reynolds J. M., Reynolds M. L., Saunders N. R. Studies of the development of brain barrier systems to lipid insoluble molecules in fetal sheep. J Physiol. 1979 Jul;292:207–231. doi: 10.1113/jphysiol.1979.sp012847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dziegielewska K. M., Evans C. A., Malinowska D. H., Møllgård K., Reynolds M. L., Saunders N. R. Blood-cerebrospinal fluid transfer of plasma proteins during fetal development in the sheep. J Physiol. 1980 Mar;300:457–465. doi: 10.1113/jphysiol.1980.sp013172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans C. A., Reynolds J. M., Reynolds M. L., Saunders N. R., Segal M. B. The development of a blood-brain barrier mechanism in foetal sheep. J Physiol. 1974 Apr;238(2):371–386. doi: 10.1113/jphysiol.1974.sp010530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felgenhauer K. Protein size and cerebrospinal fluid composition. Klin Wochenschr. 1974 Dec 15;52(24):1158–1164. doi: 10.1007/BF01466734. [DOI] [PubMed] [Google Scholar]
- Ferguson R. K., Woodbury D. M. Penetration of 14C-inulin and 14C-sucrose into brain, cerebrospinal fluid, and skeletal muscle of developing rats. Exp Brain Res. 1969;7(3):181–194. doi: 10.1007/BF00239028. [DOI] [PubMed] [Google Scholar]
- GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghinea N., Eskenasy M., Simionescu M., Simionescu N. Endothelial albumin binding proteins are membrane-associated components exposed on the cell surface. J Biol Chem. 1989 Mar 25;264(9):4755–4758. [PubMed] [Google Scholar]
- HEMMINGS W. A., BRAMBELL F. W. Protein transfer across the foetal membranes. Br Med Bull. 1961 May;17:96–101. doi: 10.1093/oxfordjournals.bmb.a069903. [DOI] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Mancini G., Carbonara A. O., Heremans J. F. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry. 1965 Sep;2(3):235–254. doi: 10.1016/0019-2791(65)90004-2. [DOI] [PubMed] [Google Scholar]
- Meschia G., Makowski E. L., Battaglia F. C. The use of indwelling catheters in the uterine and umbilical veins of sheep for a description of fetal acid-base balance and oxygenation. Yale J Biol Med. 1969 Dec;42(3-4):154–165. [PMC free article] [PubMed] [Google Scholar]
- Mollgård K., Saunders N. R. A possible transepithelial pathway via endoplasmic reticulum in foetal sheep choroid plexus. Proc R Soc Lond B Biol Sci. 1977 Nov 14;199(1135):321–326. doi: 10.1098/rspb.1977.0142. [DOI] [PubMed] [Google Scholar]
- Møllgård K., Balslev Y. The subcellular distribution of transferrin in rat choroid plexus studied with immunogold labelling of ultracryosections. Histochem J. 1989 Aug;21(8):441–448. doi: 10.1007/BF01845793. [DOI] [PubMed] [Google Scholar]
- Villaschi S., Johns L., Cirigliano M., Pietra G. G. Binding and uptake of native and glycosylated albumin-gold complexes in perfused rat lungs. Microvasc Res. 1986 Sep;32(2):190–199. doi: 10.1016/0026-2862(86)90053-1. [DOI] [PubMed] [Google Scholar]
- Webber S. E., Widdicombe J. G. The transport of albumin across the ferret in vitro whole trachea. J Physiol. 1989 Jan;408:457–472. doi: 10.1113/jphysiol.1989.sp017470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weisiger R., Gollan J., Ockner R. Receptor for albumin on the liver cell surface may mediate uptake of fatty acids and other albumin-bound substances. Science. 1981 Mar 6;211(4486):1048–1051. doi: 10.1126/science.6258226. [DOI] [PubMed] [Google Scholar]




