Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1991;440:547–567. doi: 10.1113/jphysiol.1991.sp018724

Cell volume regulation by trout erythrocytes: characteristics of the transport systems activated by hypotonic swelling.

F Garcia-Romeu 1, A R Cossins 1, R Motais 1
PMCID: PMC1180168  PMID: 1804976

Abstract

1. An osmolality reduction of the suspending medium leads to osmotic swelling of trout erythrocytes, which is followed by a volume readjustment towards the original level. The regulatory volume decrease (RVD) was not complete after 1 h. 2. During RVD the cells lost K+ and Cl- but gained Na+. This entry of Na+, which is about half the K+ loss, explains the incomplete volume recovery (it was complete when Na+ was replaced by impermeant N-methyl-D-glucamine). The cells also lose large quantities of taurine, which accounts for about 53% of the volume recovery. In addition RVD is accompanied by the activation of a pathway allowing some large organic cations which are normally impermeant, such as choline or tetramethyl-ammonium, to rapidly penetrate the cells. 3. The swelling-activated K+ loss is not significantly affected by replacement of Cl- by NO3-, indicating that K+ moves through a Cl(-)-independent K+ pathway. Furosemide, DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid) and niflumic acid inhibit the K+ loss. From experiments performed in high-K(+)-containing media, it appears that these compounds block the K+ flux, not by inhibiting Cl- movements but by interfering with the K+ pathway. 4. All the volume-activated pathways (K+, Na+, taurine, choline) are fully inhibited by furosemide and by inhibitors of the anion exchanger such as DIDS and niflumic acid. The concentration required for 50% inhibition (IC50) of both inorganic cations and taurine appears to be similar. It is proposed that DIDS interacts with a unique target which controls all the volume-sensitive transport systems.

Full text

PDF
547

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adorante J. S., Cala P. M. Activation of electroneutral K flux in Amphiuma red blood cells by N-ethylmaleimide. Distinction between K/H exchange and KCl cotransport. J Gen Physiol. 1987 Aug;90(2):209–227. doi: 10.1085/jgp.90.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baroin A., Garcia-Romeu F., Lamarre T., Motais R. Hormone-induced co-transport with specific pharmacological properties in erythrocytes of rainbow trout, Salmo gairdneri. J Physiol. 1984 May;350:137–157. doi: 10.1113/jphysiol.1984.sp015193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borgese F., Garcia-Romeu F., Motais R. Catecholamine-induced transport systems in trout erythrocyte. Na+/H+ countertransport or NaCl cotransport? J Gen Physiol. 1986 Apr;87(4):551–566. doi: 10.1085/jgp.87.4.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Borgese F., Garcia-Romeu F., Motais R. Control of cell volume and ion transport by beta-adrenergic catecholamines in erythrocytes of rainbow trout, Salmo gairdneri. J Physiol. 1987 Jan;382:123–144. doi: 10.1113/jphysiol.1987.sp016359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bourne P. K., Cossins A. R. Sodium and potassium transport in trout (Salmo gairdneri) erythrocytes. J Physiol. 1984 Feb;347:361–375. doi: 10.1113/jphysiol.1984.sp015070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boyd T. A., Cha C. J., Forster R. P., Goldstein L. Free amino acids in tissues of the skate Raja erinacea and the stingray Dasyatis sabina: effects of environmental dilution. J Exp Zool. 1977 Mar;199(3):435–442. doi: 10.1002/jez.1401990318. [DOI] [PubMed] [Google Scholar]
  7. Brazy P. C., Gunn R. B. Furosemide inhibition of chloride transport in human red blood cells. J Gen Physiol. 1976 Dec;68(6):583–599. doi: 10.1085/jgp.68.6.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brugnara C., Tosteson D. C. Cell volume, K transport, and cell density in human erythrocytes. Am J Physiol. 1987 Mar;252(3 Pt 1):C269–C276. doi: 10.1152/ajpcell.1987.252.3.C269. [DOI] [PubMed] [Google Scholar]
  9. Cala P. M. Volume regulation by Amphiuma red blood cells. The membrane potential and its implications regarding the nature of the ion-flux pathways. J Gen Physiol. 1980 Dec;76(6):683–708. doi: 10.1085/jgp.76.6.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cala P. M. Volume regulation by flounder red blood cells in anisotonic media. J Gen Physiol. 1977 May;69(5):537–552. doi: 10.1085/jgp.69.5.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Canessa M., Fabry M. E., Blumenfeld N., Nagel R. L. Volume-stimulated, Cl(-)-dependent K+ efflux is highly expressed in young human red cells containing normal hemoglobin or HbS. J Membr Biol. 1987;97(2):97–105. doi: 10.1007/BF01869416. [DOI] [PubMed] [Google Scholar]
  12. Castell J. V., Cervera M., Marco R. A convenient micromethod for the assay of primary amines and proteins with fluorescamine. A reexamination of the conditions of reaction. Anal Biochem. 1979 Nov 1;99(2):379–391. doi: 10.1016/s0003-2697(79)80022-6. [DOI] [PubMed] [Google Scholar]
  13. Cousin J. L., Motais R. Inhibition of anion permeability by amphiphilic compounds in human red cell: evidence for an interaction of niflumic acid with the band 3 protein. J Membr Biol. 1979 Apr 20;46(2):125–153. doi: 10.1007/BF01961377. [DOI] [PubMed] [Google Scholar]
  14. Cousin J. L., Motais R. The role of carbonic anhydrase inhibitors on anion permeability into ox red blood cells. J Physiol. 1976 Mar;256(1):61–80. doi: 10.1113/jphysiol.1976.sp011311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dickman K. G., Goldstein L. Cell volume regulation by skate erythrocytes: role of potassium. Am J Physiol. 1990 May;258(5 Pt 2):R1217–R1223. doi: 10.1152/ajpregu.1990.258.5.R1217. [DOI] [PubMed] [Google Scholar]
  16. Fincham D. A., Wolowyk M. W., Young J. D. Volume-sensitive taurine transport in fish erythrocytes. J Membr Biol. 1987;96(1):45–56. doi: 10.1007/BF01869333. [DOI] [PubMed] [Google Scholar]
  17. Forster R. P., Goldstein L. Amino acids and cell regulation. Yale J Biol Med. 1979 Nov-Dec;52(6):497–515. [PMC free article] [PubMed] [Google Scholar]
  18. Fugelli K., Thoroed S. M. Taurine transport associated with cell volume regulation in flounder erythrocytes under anisosmotic conditions. J Physiol. 1986 May;374:245–261. doi: 10.1113/jphysiol.1986.sp016077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fugelli K., Zachariassen K. E. The distribution of taurine, gamma-aminobutyric acid and inorganic ions between plasma and erythrocytes in flounder (Platichthys flesus) at different plasma osmolalities. Comp Biochem Physiol A Comp Physiol. 1976;55(2A):173–177. doi: 10.1016/0300-9629(76)90088-8. [DOI] [PubMed] [Google Scholar]
  20. Guizouarn H., Scheuring U., Borgese F., Motais R., Garcia-Romeu F. Effects of anions on the Na(+)-H+ exchange of trout red blood cells. J Physiol. 1990 Sep;428:79–94. doi: 10.1113/jphysiol.1990.sp018201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Haas M., McManus T. J. Effect of norepinephrine on swelling-induced potassium transport in duck red cells. Evidence against a volume-regulatory decrease under physiological conditions. J Gen Physiol. 1985 May;85(5):649–667. doi: 10.1085/jgp.85.5.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hall A. C., Ellory J. C. Evidence for the presence of volume-sensitive KCl transport in 'young' human red cells. Biochim Biophys Acta. 1986 Jun 26;858(2):317–320. doi: 10.1016/0005-2736(86)90338-x. [DOI] [PubMed] [Google Scholar]
  23. Hoffmann E. K., Lambert I. H. Amino acid transport and cell volume regulation in Ehrlich ascites tumour cells. J Physiol. 1983 May;338:613–625. doi: 10.1113/jphysiol.1983.sp014692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hoffmann E. K., Simonsen L. O. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev. 1989 Apr;69(2):315–382. doi: 10.1152/physrev.1989.69.2.315. [DOI] [PubMed] [Google Scholar]
  25. Livne A., Hoffmann E. K. Cytoplasmic acidification and activation of Na+/H+ exchange during regulatory volume decrease in Ehrlich ascites tumor cells. J Membr Biol. 1990 Mar;114(2):153–157. doi: 10.1007/BF01869096. [DOI] [PubMed] [Google Scholar]
  26. Parker J. C. Volume-responsive sodium movements in dog red blood cells. Am J Physiol. 1983 May;244(5):C324–C330. doi: 10.1152/ajpcell.1983.244.5.C324. [DOI] [PubMed] [Google Scholar]
  27. Siebens A. W., Kregenow F. M. Volume-regulatory responses of Amphiuma red cells in anisotonic media. The effect of amiloride. J Gen Physiol. 1985 Oct;86(4):527–564. doi: 10.1085/jgp.86.4.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Symposium on cell volume regulation. J Exp Zool. 1981 Mar;215(3):235–384. doi: 10.1002/jez.1402150302. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES