Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1991 Sep;441:155–174. doi: 10.1113/jphysiol.1991.sp018744

Low-frequency oscillatory activities intrinsic to rat and cat thalamocortical cells.

N Leresche 1, S Lightowler 1, I Soltesz 1, D Jassik-Gerschenfeld 1, V Crunelli 1
PMCID: PMC1180191  PMID: 1840071

Abstract

1. Low-frequency membrane potential oscillations recorded intracellularly from thalamocortical (TC) cells of the rat and cat dorsal lateral geniculate nucleus (dLGN) and of the rat ventrobasal nucleus (VB) maintained in vitro were investigated. On the basis of their electrophysiological and pharmacological properties, four types of activity were distinguished and named: the pacemaker oscillations, the spindle-like oscillations, the 'very slow' oscillations and the 'N-methyl-D-aspartate' (NMDA) oscillations. 2. The pacemaker oscillations (95 out of 173 cells) consisted of rhythmic, large-amplitude (10-30 mV) depolarizations which occurred at a frequency of 1.8 +/- 0.3 Hz (range, 0.5-2.9 Hz) and could often give rise to single or a burst of action potentials. Pacemaker oscillations were observed when the membrane potential was moved negative to -55 and positive to -80 mV, but in a given cell the upper and lower limits of this voltage range were separated by only 13.1 +/- 0.5 mV. Above -45 mV tonic firing consisting of single action potentials was seen in the cells showing this or the other types of low-frequency oscillations. 3. The spindle-like oscillations were observed in thirty-nine (out of 173) TC cells and consisted of rhythmic (2.1 +/- 0.3 Hz), large-amplitude depolarizations (and often associated burst firing) similar to the pacemaker oscillations but occurring in discrete periods every 5-25 s and lasting for 1.5-28 s. The spindle-like oscillations were observed when the membrane potential was moved negative to -55 and positive to -80 mV and in two cells they were transformed into continuous pacemaker oscillations by depolarization of the membrane potential to -60 mV. 4. Pacemaker and spindle-like oscillations were unaffected by tetrodotoxin (TTX) or by selective blockade of NMDA, non-NMDA, GABAA, GABAB, nicotinic, muscarinic, alpha- and beta-noradrenergic receptors. 5. The 'very slow' oscillations consisted of a TTX-insensitive, slow hyperpolarization-depolarization sequence (5-15 mV in amplitude) which lasted up to 90 s and was observed in nine dLGN cells and in two VB cells. The pacemaker and the spindle-like oscillations were recorded in one cell each which also showed the 'very slow' oscillations. 6. The 'NMDA' oscillations were observed only in a 'Mg(2+)-free' medium (0 mM-Mg2+, 2-4 mM-Ca2+; 64 out of 72 cells) and consisted of large-amplitude (10-25 mV) depolarizations that did not occur at regular intervals and were intermixed with smaller depolarizations present on the baseline and on the falling phase of the larger ones.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
155

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burke W., Jervie Sefton A. Discharge patterns of principal cells and interneurones in lateral geniculate nucleus of rat. J Physiol. 1966 Nov;187(1):201–212. doi: 10.1113/jphysiol.1966.sp008083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buzsáki G., Smith A., Berger S., Fisher L. J., Gage F. H. Petit mal epilepsy and parkinsonian tremor: hypothesis of a common pacemaker. Neuroscience. 1990;36(1):1–14. doi: 10.1016/0306-4522(90)90345-5. [DOI] [PubMed] [Google Scholar]
  3. Crunelli V., Kelly J. S., Leresche N., Pirchio M. On the excitatory post-synaptic potential evoked by stimulation of the optic tract in the rat lateral geniculate nucleus. J Physiol. 1987 Mar;384:603–618. doi: 10.1113/jphysiol.1987.sp016472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crunelli V., Kelly J. S., Leresche N., Pirchio M. The ventral and dorsal lateral geniculate nucleus of the rat: intracellular recordings in vitro. J Physiol. 1987 Mar;384:587–601. doi: 10.1113/jphysiol.1987.sp016471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crunelli V., Leresche N., Parnavelas J. G. Membrane properties of morphologically identified X and Y cells in the lateral geniculate nucleus of the cat in vitro. J Physiol. 1987 Sep;390:243–256. doi: 10.1113/jphysiol.1987.sp016697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deschênes M., Paradis M., Roy J. P., Steriade M. Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges. J Neurophysiol. 1984 Jun;51(6):1196–1219. doi: 10.1152/jn.1984.51.6.1196. [DOI] [PubMed] [Google Scholar]
  7. Dutar P., Nicoll R. A. A physiological role for GABAB receptors in the central nervous system. Nature. 1988 Mar 10;332(6160):156–158. doi: 10.1038/332156a0. [DOI] [PubMed] [Google Scholar]
  8. Fourment A., Hirsch J. C., Marc M. E. Oscillations of the spontaneous slow-wave sleep rhythm in lateral geniculate nucleus relay neurons of behaving cats. Neuroscience. 1985 Apr;14(4):1061–1075. doi: 10.1016/0306-4522(85)90277-5. [DOI] [PubMed] [Google Scholar]
  9. Friedlander M. J., Lin C. S., Stanford L. R., Sherman S. M. Morphology of functionally identified neurons in lateral geniculate nucleus of the cat. J Neurophysiol. 1981 Jul;46(1):80–129. doi: 10.1152/jn.1981.46.1.80. [DOI] [PubMed] [Google Scholar]
  10. Gloor P., Fariello R. G. Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy. Trends Neurosci. 1988 Feb;11(2):63–68. doi: 10.1016/0166-2236(88)90166-x. [DOI] [PubMed] [Google Scholar]
  11. Heggelund P., Hartveit E. Neurotransmitter receptors mediating excitatory input to cells in the cat lateral geniculate nucleus. I. Lagged cells. J Neurophysiol. 1990 Jun;63(6):1347–1360. doi: 10.1152/jn.1990.63.6.1347. [DOI] [PubMed] [Google Scholar]
  12. Honoré T., Davies S. N., Drejer J., Fletcher E. J., Jacobsen P., Lodge D., Nielsen F. E. Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. Science. 1988 Aug 5;241(4866):701–703. doi: 10.1126/science.2899909. [DOI] [PubMed] [Google Scholar]
  13. Hu B., Steriade M., Deschênes M. The cellular mechanism of thalamic ponto-geniculo-occipital waves. Neuroscience. 1989;31(1):25–35. doi: 10.1016/0306-4522(89)90028-6. [DOI] [PubMed] [Google Scholar]
  14. Hu B., Steriade M., Deschênes M. The effects of brainstem peribrachial stimulation on perigeniculate neurons: the blockage of spindle waves. Neuroscience. 1989;31(1):1–12. doi: 10.1016/0306-4522(89)90026-2. [DOI] [PubMed] [Google Scholar]
  15. Jahnsen H., Llinás R. Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol. 1984 Apr;349:205–226. doi: 10.1113/jphysiol.1984.sp015153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jahnsen H., Llinás R. Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol. 1984 Apr;349:227–247. doi: 10.1113/jphysiol.1984.sp015154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Johnson J. L. The excitant amino acids glutamic and aspartic acid as transmitter candidates in the vertebrate central nervous system. Prog Neurobiol. 1978;10(3):155–202. doi: 10.1016/0301-0082(78)90002-3. [DOI] [PubMed] [Google Scholar]
  18. Juhász G., Kékesi K., Emri Z., Soltesz I., Crunelli V. Sleep-promoting action of excitatory amino acid antagonists: a different role for thalamic NMDA and non-NMDA receptors. Neurosci Lett. 1990 Jul 13;114(3):333–338. doi: 10.1016/0304-3940(90)90586-x. [DOI] [PubMed] [Google Scholar]
  19. Kemp J. A., Sillito A. M. The nature of the excitatory transmitter mediating X and Y cell inputs to the cat dorsal lateral geniculate nucleus. J Physiol. 1982 Feb;323:377–391. doi: 10.1113/jphysiol.1982.sp014078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kita H., Kitai S. T. Electrophysiology of rat thalamo-cortical relay neurons: an in vivo intracellular recording and labeling study. Brain Res. 1986 Apr 16;371(1):80–89. doi: 10.1016/0006-8993(86)90812-7. [DOI] [PubMed] [Google Scholar]
  21. Lamarre Y., Filion M., Cordeau J. P. Neuronal discharges of the ventrolateral nucleus of the thalamus during sleep and wakefulness in the cat. I. Spontaneous activity. Exp Brain Res. 1971 Jun 29;12(5):480–498. doi: 10.1007/BF00234244. [DOI] [PubMed] [Google Scholar]
  22. Lenz F. A., Tasker R. R., Kwan H. C., Schnider S., Kwong R., Murayama Y., Dostrovsky J. O., Murphy J. T. Single unit analysis of the human ventral thalamic nuclear group: correlation of thalamic "tremor cells" with the 3-6 Hz component of parkinsonian tremor. J Neurosci. 1988 Mar;8(3):754–764. doi: 10.1523/JNEUROSCI.08-03-00754.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Leresche N., Jassik-Gerschenfeld D., Haby M., Soltesz I., Crunelli V. Pacemaker-like and other types of spontaneous membrane potential oscillations of thalamocortical cells. Neurosci Lett. 1990 May 18;113(1):72–77. doi: 10.1016/0304-3940(90)90497-w. [DOI] [PubMed] [Google Scholar]
  24. Llinás R. R. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science. 1988 Dec 23;242(4886):1654–1664. doi: 10.1126/science.3059497. [DOI] [PubMed] [Google Scholar]
  25. Mayer M. L., Westbrook G. L. Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol. 1987 Dec;394:501–527. doi: 10.1113/jphysiol.1987.sp016883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McCormick D. A., Pape H. C. Acetylcholine inhibits identified interneurons in the cat lateral geniculate nucleus. Nature. 1988 Jul 21;334(6179):246–248. doi: 10.1038/334246a0. [DOI] [PubMed] [Google Scholar]
  27. McCormick D. A., Prince D. A. Noradrenergic modulation of firing pattern in guinea pig and cat thalamic neurons, in vitro. J Neurophysiol. 1988 Mar;59(3):978–996. doi: 10.1152/jn.1988.59.3.978. [DOI] [PubMed] [Google Scholar]
  28. Nowak L., Bregestovski P., Ascher P., Herbet A., Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984 Feb 2;307(5950):462–465. doi: 10.1038/307462a0. [DOI] [PubMed] [Google Scholar]
  29. Ottersen O. P., Storm-Mathisen J. Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. J Comp Neurol. 1984 Nov 1;229(3):374–392. doi: 10.1002/cne.902290308. [DOI] [PubMed] [Google Scholar]
  30. Sah P., Hestrin S., Nicoll R. A. Tonic activation of NMDA receptors by ambient glutamate enhances excitability of neurons. Science. 1989 Nov 10;246(4931):815–818. doi: 10.1126/science.2573153. [DOI] [PubMed] [Google Scholar]
  31. Salt T. E. Excitatory amino acid receptors and synaptic transmission in the rat ventrobasal thalamus. J Physiol. 1987 Oct;391:499–510. doi: 10.1113/jphysiol.1987.sp016752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Scharfman H. E., Lu S. M., Guido W., Adams P. R., Sherman S. M. N-methyl-D-aspartate receptors contribute to excitatory postsynaptic potentials of cat lateral geniculate neurons recorded in thalamic slices. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4548–4552. doi: 10.1073/pnas.87.12.4548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sillito A. M., Murphy P. C., Salt T. E., Moody C. I. Dependence of retinogeniculate transmission in cat on NMDA receptors. J Neurophysiol. 1990 Feb;63(2):347–355. doi: 10.1152/jn.1990.63.2.347. [DOI] [PubMed] [Google Scholar]
  34. Soltesz I., Haby M., Leresche N., Crunelli V. The GABAB antagonist phaclofen inhibits the late K+-dependent IPSP in cat and rat thalamic and hippocampal neurones. Brain Res. 1988 May 17;448(2):351–354. doi: 10.1016/0006-8993(88)91275-9. [DOI] [PubMed] [Google Scholar]
  35. Soltesz I., Lightowler S., Leresche N., Crunelli V. Optic tract stimulation evokes GABAA but not GABAB IPSPs in the rat ventral lateral geniculate nucleus. Brain Res. 1989 Feb 6;479(1):49–55. doi: 10.1016/0006-8993(89)91334-6. [DOI] [PubMed] [Google Scholar]
  36. Soltesz I., Lightowler S., Leresche N., Jassik-Gerschenfeld D., Pollard C. E., Crunelli V. Two inward currents and the transformation of low-frequency oscillations of rat and cat thalamocortical cells. J Physiol. 1991 Sep;441:175–197. doi: 10.1113/jphysiol.1991.sp018745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Steriade M., Llinás R. R. The functional states of the thalamus and the associated neuronal interplay. Physiol Rev. 1988 Jul;68(3):649–742. doi: 10.1152/physrev.1988.68.3.649. [DOI] [PubMed] [Google Scholar]
  38. Sumitomo I., Takahashi Y., Kayama Y., Ogawa T. Burst discharges associated with phasic hyperpolarizing oscillations of rat ventrobasal relay neurons. Brain Res. 1988 May 3;447(2):376–379. doi: 10.1016/0006-8993(88)91143-2. [DOI] [PubMed] [Google Scholar]
  39. Thomson A. M. Inhibitory postsynaptic potentials evoked in thalamic neurons by stimulation of the reticularis nucleus evoke slow spikes in isolated rat brain slices--I. Neuroscience. 1988 May;25(2):491–502. doi: 10.1016/0306-4522(88)90253-9. [DOI] [PubMed] [Google Scholar]
  40. Watkins J. C., Krogsgaard-Larsen P., Honoré T. Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol Sci. 1990 Jan;11(1):25–33. doi: 10.1016/0165-6147(90)90038-a. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES