Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1997 Jul;73(1):52–66. doi: 10.1016/S0006-3495(97)78047-0

A model of the nicotinic receptor extracellular domain based on sequence identity and residue location.

I Tsigelny 1, N Sugiyama 1, S M Sine 1, P Taylor 1
PMCID: PMC1180908  PMID: 9199771

Abstract

We have modeled the extracellular domains of individual subunits (amino acids 31-200) in the nicotinic acetylcholine receptor using sequence homology with copper binding proteins of known crystal structure, plastocyanin and pseudoazurin, and data from recent site-specific mutagenesis, antibody mapping, and site-directed labelling studies. These data formed an initial model that was refined using molecular dynamics and mechanics as well as electrostatic and solvation energy calculations. The sequences between residues 31 and 164 in the alpha 1-subunit and corresponding residues in homologous receptor subunits show similarity with the core sequence of the cation binding site in plastocyanin and pseudoazurin, a region in the template proteins characterized by multiple hairpin loops. In addition to defining the subunit interfaces that comprise the site for agonist and competitive antagonist binding in more detail, the findings show that negatively charged residues cluster in domains arranged to diminish electrostatic free energy of the complex. Electrostatic factors also appear to distinguish the ligand binding interfaces, alpha gamma and alpha delta, from the other three interfaces on the pentameric receptor.

Full text

PDF
52

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson S. N., Li Y., Culver P., Taylor P. An analog of lophotoxin reacts covalently with Tyr190 in the alpha-subunit of the nicotinic acetylcholine receptor. J Biol Chem. 1989 Jul 25;264(21):12666–12672. [PubMed] [Google Scholar]
  2. Adman E. T., Turley S., Bramson R., Petratos K., Banner D., Tsernoglou D., Beppu T., Watanabe H. A 2.0-A structure of the blue copper protein (cupredoxin) from Alcaligenes faecalis S-6. J Biol Chem. 1989 Jan 5;264(1):87–99. [PubMed] [Google Scholar]
  3. Aylwin M. L., White M. M. Gating properties of mutant acetylcholine receptors. Mol Pharmacol. 1994 Dec;46(6):1149–1155. [PubMed] [Google Scholar]
  4. Beroukhim R., Unwin N. Three-dimensional location of the main immunogenic region of the acetylcholine receptor. Neuron. 1995 Aug;15(2):323–331. doi: 10.1016/0896-6273(95)90037-3. [DOI] [PubMed] [Google Scholar]
  5. Blount P., Merlie J. P. Molecular basis of the two nonequivalent ligand binding sites of the muscle nicotinic acetylcholine receptor. Neuron. 1989 Sep;3(3):349–357. doi: 10.1016/0896-6273(89)90259-6. [DOI] [PubMed] [Google Scholar]
  6. Changeux J. P. Thudichum Medal Lecture. The acetylcholine receptor: a model for allosteric membrane proteins. Biochem Soc Trans. 1995 May;23(2):195–205. doi: 10.1042/bst0230195. [DOI] [PubMed] [Google Scholar]
  7. Cockcroft V. B., Lunt G. G., Osguthorpe D. J. Modelling of binding sites of the nicotinic acetylcholine receptor and their relation to models of the whole receptor. Biochem Soc Symp. 1990;57:65–79. [PubMed] [Google Scholar]
  8. Cohen J. B., Sharp S. D., Liu W. S. Structure of the agonist-binding site of the nicotinic acetylcholine receptor. [3H]acetylcholine mustard identifies residues in the cation-binding subsite. J Biol Chem. 1991 Dec 5;266(34):23354–23364. [PubMed] [Google Scholar]
  9. Corringer P. J., Galzi J. L., Eiselé J. L., Bertrand S., Changeux J. P., Bertrand D. Identification of a new component of the agonist binding site of the nicotinic alpha 7 homooligomeric receptor. J Biol Chem. 1995 May 19;270(20):11749–11752. doi: 10.1074/jbc.270.20.11749. [DOI] [PubMed] [Google Scholar]
  10. Czajkowski C., Karlin A. Agonist binding site of Torpedo electric tissue nicotinic acetylcholine receptor. A negatively charged region of the delta subunit within 0.9 nm of the alpha subunit binding site disulfide. J Biol Chem. 1991 Nov 25;266(33):22603–22612. [PubMed] [Google Scholar]
  11. Czajkowski C., Karlin A. Structure of the nicotinic receptor acetylcholine-binding site. Identification of acidic residues in the delta subunit within 0.9 nm of the 5 alpha subunit-binding. J Biol Chem. 1995 Feb 17;270(7):3160–3164. doi: 10.1074/jbc.270.7.3160. [DOI] [PubMed] [Google Scholar]
  12. Czajkowski C., Kaufmann C., Karlin A. Negatively charged amino acid residues in the nicotinic receptor delta subunit that contribute to the binding of acetylcholine. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6285–6289. doi: 10.1073/pnas.90.13.6285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Doolittle R. F. Searching through sequence databases. Methods Enzymol. 1990;183:99–110. doi: 10.1016/0076-6879(90)83008-w. [DOI] [PubMed] [Google Scholar]
  14. Fitch W. M. An improved method of testing for evolutionary homology. J Mol Biol. 1966 Mar;16(1):9–16. doi: 10.1016/s0022-2836(66)80258-9. [DOI] [PubMed] [Google Scholar]
  15. Fu D. X., Sine S. M. Competitive antagonists bridge the alpha-gamma subunit interface of the acetylcholine receptor through quaternary ammonium-aromatic interactions. J Biol Chem. 1994 Oct 21;269(42):26152–26157. [PubMed] [Google Scholar]
  16. Galzi J. L., Revah F., Black D., Goeldner M., Hirth C., Changeux J. P. Identification of a novel amino acid alpha-tyrosine 93 within the cholinergic ligands-binding sites of the acetylcholine receptor by photoaffinity labeling. Additional evidence for a three-loop model of the cholinergic ligands-binding sites. J Biol Chem. 1990 Jun 25;265(18):10430–10437. [PubMed] [Google Scholar]
  17. Gilson M. K., Honig B. Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. Proteins. 1988;4(1):7–18. doi: 10.1002/prot.340040104. [DOI] [PubMed] [Google Scholar]
  18. Gu Y., Forsayeth J. R., Verrall S., Yu X. M., Hall Z. W. Assembly of the mammalian muscle acetylcholine receptor in transfected COS cells. J Cell Biol. 1991 Aug;114(4):799–807. doi: 10.1083/jcb.114.4.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Guddat L. W., Martin J. A., Shan L., Edmundson A. B., Gray W. R. Three-dimensional structure of the alpha-conotoxin GI at 1.2 A resolution. Biochemistry. 1996 Sep 3;35(35):11329–11335. doi: 10.1021/bi960820h. [DOI] [PubMed] [Google Scholar]
  20. Guss J. M., Freeman H. C. Structure of oxidized poplar plastocyanin at 1.6 A resolution. J Mol Biol. 1983 Sep 15;169(2):521–563. doi: 10.1016/s0022-2836(83)80064-3. [DOI] [PubMed] [Google Scholar]
  21. Hultner M., Smith D. W., Wills C. Similarity landscapes: a way to detect many structural and sequence motifs in both introns and exons. J Mol Evol. 1994 Feb;38(2):188–203. doi: 10.1007/BF00166165. [DOI] [PubMed] [Google Scholar]
  22. Kao P. N., Dwork A. J., Kaldany R. R., Silver M. L., Wideman J., Stein S., Karlin A. Identification of the alpha subunit half-cystine specifically labeled by an affinity reagent for the acetylcholine receptor binding site. J Biol Chem. 1984 Oct 10;259(19):11662–11665. [PubMed] [Google Scholar]
  23. Karlin A., Akabas M. H. Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron. 1995 Dec;15(6):1231–1244. doi: 10.1016/0896-6273(95)90004-7. [DOI] [PubMed] [Google Scholar]
  24. Keller S. H., Kreienkamp H. J., Kawanishi C., Taylor P. Molecular determinants conferring alpha-toxin resistance in recombinant DNA-derived acetylcholine receptors. J Biol Chem. 1995 Feb 24;270(8):4165–4171. doi: 10.1074/jbc.270.8.4165. [DOI] [PubMed] [Google Scholar]
  25. Kreienkamp H. J., Maeda R. K., Sine S. M., Taylor P. Intersubunit contacts governing assembly of the mammalian nicotinic acetylcholine receptor. Neuron. 1995 Mar;14(3):635–644. doi: 10.1016/0896-6273(95)90320-8. [DOI] [PubMed] [Google Scholar]
  26. Le Novère N., Changeux J. P. Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J Mol Evol. 1995 Feb;40(2):155–172. doi: 10.1007/BF00167110. [DOI] [PubMed] [Google Scholar]
  27. Machold J., Weise C., Utkin Y., Tsetlin V., Hucho F. The handedness of the subunit arrangement of the nicotinic acetylcholine receptor from Torpedo californica. Eur J Biochem. 1995 Dec 1;234(2):427–430. doi: 10.1111/j.1432-1033.1995.427_b.x. [DOI] [PubMed] [Google Scholar]
  28. Messerschmidt A., Huber R. The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modelling and structural relationships. Eur J Biochem. 1990 Jan 26;187(2):341–352. doi: 10.1111/j.1432-1033.1990.tb15311.x. [DOI] [PubMed] [Google Scholar]
  29. Middleton R. E., Cohen J. B. Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: [3H]nicotine as an agonist photoaffinity label. Biochemistry. 1991 Jul 16;30(28):6987–6997. doi: 10.1021/bi00242a026. [DOI] [PubMed] [Google Scholar]
  30. Myers R. A., Zafaralla G. C., Gray W. R., Abbott J., Cruz L. J., Olivera B. M. alpha-Conotoxins, small peptide probes of nicotinic acetylcholine receptors. Biochemistry. 1991 Sep 24;30(38):9370–9377. doi: 10.1021/bi00102a034. [DOI] [PubMed] [Google Scholar]
  31. Nowak M. W., Kearney P. C., Sampson J. R., Saks M. E., Labarca C. G., Silverman S. K., Zhong W., Thorson J., Abelson J. N., Davidson N. Nicotinic receptor binding site probed with unnatural amino acid incorporation in intact cells. Science. 1995 Apr 21;268(5209):439–442. doi: 10.1126/science.7716551. [DOI] [PubMed] [Google Scholar]
  32. Nunzi F., Woudstra M., Campèse D., Bonicel J., Morin D., Bruschi M. Amino-acid sequence of rusticyanin from Thiobacillus ferrooxidans and its comparison with other blue copper proteins. Biochim Biophys Acta. 1993 Mar 5;1162(1-2):28–34. doi: 10.1016/0167-4838(93)90123-9. [DOI] [PubMed] [Google Scholar]
  33. O'Hara P. J., Sheppard P. O., Thøgersen H., Venezia D., Haldeman B. A., McGrane V., Houamed K. M., Thomsen C., Gilbert T. L., Mulvihill E. R. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron. 1993 Jul;11(1):41–52. doi: 10.1016/0896-6273(93)90269-w. [DOI] [PubMed] [Google Scholar]
  34. O'Leary M. E., Filatov G. N., White M. M. Characterization of d-tubocurarine binding site of Torpedo acetylcholine receptor. Am J Physiol. 1994 Mar;266(3 Pt 1):C648–C653. doi: 10.1152/ajpcell.1994.266.3.C648. [DOI] [PubMed] [Google Scholar]
  35. O'Leary M. E., White M. M. Mutational analysis of ligand-induced activation of the Torpedo acetylcholine receptor. J Biol Chem. 1992 Apr 25;267(12):8360–8365. [PubMed] [Google Scholar]
  36. Ohno K., Wang H. L., Milone M., Bren N., Brengman J. M., Nakano S., Quiram P., Pruitt J. N., Sine S. M., Engel A. G. Congenital myasthenic syndrome caused by decreased agonist binding affinity due to a mutation in the acetylcholine receptor epsilon subunit. Neuron. 1996 Jul;17(1):157–170. doi: 10.1016/s0896-6273(00)80289-5. [DOI] [PubMed] [Google Scholar]
  37. Oswald R. E., Changeux J. P. Crosslinking of alpha-bungarotoxin to the acetylcholine receptor from Torpedo marmorata by ultraviolet light irradiation. FEBS Lett. 1982 Mar 22;139(2):225–229. doi: 10.1016/0014-5793(82)80857-0. [DOI] [PubMed] [Google Scholar]
  38. Pearson W. R. Effective protein sequence comparison. Methods Enzymol. 1996;266:227–258. doi: 10.1016/s0076-6879(96)66017-0. [DOI] [PubMed] [Google Scholar]
  39. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pearson W. R. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 1990;183:63–98. doi: 10.1016/0076-6879(90)83007-v. [DOI] [PubMed] [Google Scholar]
  41. Prince R. J., Sine S. M. Molecular dissection of subunit interfaces in the acetylcholine receptor. Identification of residues that determine agonist selectivity. J Biol Chem. 1996 Oct 18;271(42):25770–25777. doi: 10.1074/jbc.271.42.25770. [DOI] [PubMed] [Google Scholar]
  42. Rydén L. G., Hunt L. T. Evolution of protein complexity: the blue copper-containing oxidases and related proteins. J Mol Evol. 1993 Jan;36(1):41–66. doi: 10.1007/BF02407305. [DOI] [PubMed] [Google Scholar]
  43. Sine S. M., Claudio T. Gamma- and delta-subunits regulate the affinity and the cooperativity of ligand binding to the acetylcholine receptor. J Biol Chem. 1991 Oct 15;266(29):19369–19377. [PubMed] [Google Scholar]
  44. Sine S. M., Kreienkamp H. J., Bren N., Maeda R., Taylor P. Molecular dissection of subunit interfaces in the acetylcholine receptor: identification of determinants of alpha-conotoxin M1 selectivity. Neuron. 1995 Jul;15(1):205–211. doi: 10.1016/0896-6273(95)90077-2. [DOI] [PubMed] [Google Scholar]
  45. Sine S. M. Molecular dissection of subunit interfaces in the acetylcholine receptor: identification of residues that determine curare selectivity. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9436–9440. doi: 10.1073/pnas.90.20.9436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sine S. M., Quiram P., Papanikolaou F., Kreienkamp H. J., Taylor P. Conserved tyrosines in the alpha subunit of the nicotinic acetylcholine receptor stabilize quaternary ammonium groups of agonists and curariform antagonists. J Biol Chem. 1994 Mar 25;269(12):8808–8816. [PubMed] [Google Scholar]
  47. Stern-Bach Y., Bettler B., Hartley M., Sheppard P. O., O'Hara P. J., Heinemann S. F. Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron. 1994 Dec;13(6):1345–1357. doi: 10.1016/0896-6273(94)90420-0. [DOI] [PubMed] [Google Scholar]
  48. Sugiyama N., Boyd A. E., Taylor P. Anionic residue in the alpha-subunit of the nicotinic acetylcholine receptor contributing to subunit assembly and ligand binding. J Biol Chem. 1996 Oct 25;271(43):26575–26581. doi: 10.1074/jbc.271.43.26575. [DOI] [PubMed] [Google Scholar]
  49. Sutcliffe M. J., Wo Z. G., Oswald R. E. Three-dimensional models of non-NMDA glutamate receptors. Biophys J. 1996 Apr;70(4):1575–1589. doi: 10.1016/S0006-3495(96)79724-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tomaselli G. F., McLaughlin J. T., Jurman M. E., Hawrot E., Yellen G. Mutations affecting agonist sensitivity of the nicotinic acetylcholine receptor. Biophys J. 1991 Sep;60(3):721–727. doi: 10.1016/S0006-3495(91)82102-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Trémeau O., Lemaire C., Drevet P., Pinkasfeld S., Ducancel F., Boulain J. C., Ménez A. Genetic engineering of snake toxins. The functional site of Erabutoxin a, as delineated by site-directed mutagenesis, includes variant residues. J Biol Chem. 1995 Apr 21;270(16):9362–9369. doi: 10.1074/jbc.270.16.9362. [DOI] [PubMed] [Google Scholar]
  52. Tzartos S., Hochschwender S., Vasquez P., Lindstrom J. Passive transfer of experimental autoimmune myasthenia gravis by monoclonal antibodies to the main immunogenic region of the acetylcholine receptor. J Neuroimmunol. 1987 Jun;15(2):185–194. doi: 10.1016/0165-5728(87)90092-0. [DOI] [PubMed] [Google Scholar]
  53. Unwin N. Acetylcholine receptor channel imaged in the open state. Nature. 1995 Jan 5;373(6509):37–43. doi: 10.1038/373037a0. [DOI] [PubMed] [Google Scholar]
  54. Unwin N. Nicotinic acetylcholine receptor at 9 A resolution. J Mol Biol. 1993 Feb 20;229(4):1101–1124. doi: 10.1006/jmbi.1993.1107. [DOI] [PubMed] [Google Scholar]
  55. Unwin N. Projection structure of the nicotinic acetylcholine receptor: distinct conformations of the alpha subunits. J Mol Biol. 1996 Apr 5;257(3):586–596. doi: 10.1006/jmbi.1996.0187. [DOI] [PubMed] [Google Scholar]
  56. Wo Z. G., Oswald R. E. Transmembrane topology of two kainate receptor subunits revealed by N-glycosylation. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7154–7158. doi: 10.1073/pnas.91.15.7154. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES