Abstract
The effect of lipid headgroup and curvature-related acyl packing stress on PEG-induced phospholipid vesicle aggregation and fusion were studied by measuring vesicle and aggregate sizes using the quasi-elastic light scattering and fluorescence energy transfer techniques. The effect of the lipid headgroup was monitored by varying the relative phosphatidylcholine (PC) and phosphatidylethanolamine (PE) contents in the vesicles, and the influence of hydrocarbon chain packing stress was controlled either by the relative amount of PE and PC content in the vesicles, or by the degree of unsaturation of the acyl chains of a series of PEs, e.g., dilinoleoylphosphatidylethanolamine (dilin-PE), lysophosphatidylethanolamine (lyso-PE), and transacylated egg phosphatidylethanolamine (TPE). The PEG threshold for aggregation depends only weakly on the headgroup composition of vesicles. However, in addition to the lipid headgroup, the curvature stress of the monolayer that forms the vesicle walls plays a very important role in fusion. Highly stressed vesicles, i.e., vesicles containing PE with highly unsaturated chains, need less PEG to induce fusion. This finding applies to the fusion of both small unilamellar vesicles and large unilamellar vesicles. The effect of electrostatic charge on vesicle aggregation and fusion were studied by changing the pH of the vesicle suspension media. At pH 9, when PE headgroups are weakly charged, increasing electrostatic repulsion between headgroups on the same bilayer surface reduces curvature stress, whereas increasing electrostatic repulsion between apposing bilayer headgroups hinders intervesicle approach, both of which inhibit aggregation and fusion, as expected.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahkong Q. F., Lucy J. A. Localized osmotic swelling and cell fusion in erythrocytes: possible implications for exocytosis. J Cell Sci. 1988 Dec;91(Pt 4):597–601. doi: 10.1242/jcs.91.4.597. [DOI] [PubMed] [Google Scholar]
- Arnold K., Zschoernig O., Barthel D., Herold W. Exclusion of poly(ethylene glycol) from liposome surfaces. Biochim Biophys Acta. 1990 Mar;1022(3):303–310. doi: 10.1016/0005-2736(90)90278-v. [DOI] [PubMed] [Google Scholar]
- Boni L. T., Hah J. S., Hui S. W., Mukherjee P., Ho J. T., Jung C. Y. Aggregation and fusion of unilamellar vesicles by poly(ethylene glycol). Biochim Biophys Acta. 1984 Sep 5;775(3):409–418. doi: 10.1016/0005-2736(84)90198-6. [DOI] [PubMed] [Google Scholar]
- Boni L. T., Hui S. W. Polymorphic phase behaviour of dilinoleoylphosphatidylethanolamine and palmitoyloleoylphosphatidylcholine mixtures. Structural changes between hexagonal, cubic and bilayer phases. Biochim Biophys Acta. 1983 Jun 10;731(2):177–185. doi: 10.1016/0005-2736(83)90007-x. [DOI] [PubMed] [Google Scholar]
- Boni L. T., Stewart T. P., Alderfer J. L., Hui S. W. Lipid-polyethylene glycol interactions: I. Induction of fusion between liposomes. J Membr Biol. 1981;62(1-2):65–70. doi: 10.1007/BF01870200. [DOI] [PubMed] [Google Scholar]
- Boni L. T., Stewart T. P., Hui S. W. Alterations in phospholipid polymorphism by polyethylene glycol. J Membr Biol. 1984;80(1):91–104. doi: 10.1007/BF01868693. [DOI] [PubMed] [Google Scholar]
- Burgess S. W., McIntosh T. J., Lentz B. R. Modulation of poly(ethylene glycol)-induced fusion by membrane hydration: importance of interbilayer separation. Biochemistry. 1992 Mar 17;31(10):2653–2661. doi: 10.1021/bi00125a004. [DOI] [PubMed] [Google Scholar]
- Fenske D. B., Jarrell H. C., Guo Y., Hui S. W. Effect of unsaturated phosphatidylethanolamine on the chain order profile of bilayers at the onset of the hexagonal phase transition. A 2H NMR study. Biochemistry. 1990 Dec 25;29(51):11222–11229. doi: 10.1021/bi00503a010. [DOI] [PubMed] [Google Scholar]
- Hui S. W., Isac T., Boni L. T., Sen A. Action of polyethylene glycol on the fusion of human erythrocyte membranes. J Membr Biol. 1985;84(2):137–146. doi: 10.1007/BF01872211. [DOI] [PubMed] [Google Scholar]
- Hui S. W., Sen A. Effects of lipid packing on polymorphic phase behavior and membrane properties. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5825–5829. doi: 10.1073/pnas.86.15.5825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hui S. W., Stewart T. P., Yeagle P. L., Albert A. D. Bilayer to non-bilayer transition in mixtures of phosphatidylethanolamine and phosphatidylcholine: implications for membrane properties. Arch Biochem Biophys. 1981 Apr 1;207(2):227–240. doi: 10.1016/0003-9861(81)90029-1. [DOI] [PubMed] [Google Scholar]
- Lentz B. R., McIntyre G. F., Parks D. J., Yates J. C., Massenburg D. Bilayer curvature and certain amphipaths promote poly(ethylene glycol)-induced fusion of dipalmitoylphosphatidylcholine unilamellar vesicles. Biochemistry. 1992 Mar 17;31(10):2643–2653. doi: 10.1021/bi00125a003. [DOI] [PubMed] [Google Scholar]
- Li L. H., Hui S. W. The effect of lipid molecular packing stress on cationic liposome-induced rabbit erythrocyte fusion. Biochim Biophys Acta. 1997 Jan 14;1323(1):105–116. doi: 10.1016/s0005-2736(96)00161-7. [DOI] [PubMed] [Google Scholar]
- Marsh D. Intrinsic curvature in normal and inverted lipid structures and in membranes. Biophys J. 1996 May;70(5):2248–2255. doi: 10.1016/S0006-3495(96)79790-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rand R. P., Fuller N. L., Gruner S. M., Parsegian V. A. Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress. Biochemistry. 1990 Jan 9;29(1):76–87. doi: 10.1021/bi00453a010. [DOI] [PubMed] [Google Scholar]
- Sen A., Isac T. V., Hui S. W. Bilayer packing stress and defects in mixed dilinoleoylphosphatidylethanolamine and palmitoyloleoylphosphatidylcholine and their susceptibility to phospholipase A2. Biochemistry. 1991 May 7;30(18):4516–4521. doi: 10.1021/bi00232a021. [DOI] [PubMed] [Google Scholar]
- Siegel D. P. Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. Biophys J. 1993 Nov;65(5):2124–2140. doi: 10.1016/S0006-3495(93)81256-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Viguera A. R., Mencía M., Goñi F. M. Time-resolved and equilibrium measurements of the effects of poly(ethylene glycol) on small unilamellar phospholipid vesicles. Biochemistry. 1993 Apr 13;32(14):3708–3713. doi: 10.1021/bi00065a024. [DOI] [PubMed] [Google Scholar]
- Yamazaki M., Ito T. Deformation and instability in membrane structure of phospholipid vesicles caused by osmophobic association: mechanical stress model for the mechanism of poly(ethylene glycol)-induced membrane fusion. Biochemistry. 1990 Feb 6;29(5):1309–1314. doi: 10.1021/bi00457a029. [DOI] [PubMed] [Google Scholar]
