Abstract
A general algebraic approach to the kinetic analysis of time-dependent absorption data is presented that allows the calculation of possible kinetic schemes. The kinetic matrices of all possible reaction mechanisms are calculated from experimental eigenvalues and eigenvectors derived from the decay constants and amplitude spectra (b-spectra) of the global exponential fit to the time-dependence of the absorption data. The eigenvalues are directly related to the decay constants, and the eigenvectors are obtained by decomposing the b-spectra into spectral components representing the intermediates. The analysis method is applied to the late intermediates (lumi, meta I, meta I-380, and meta II) of the rhodopsin photoreaction. The b-spectra are decomposed into lumi, meta I, meta-380, and rhodopsin spectra. The meta-380 component is partitioned into isospectral meta I-380 and meta II components based on physical criteria. The calculated kinetic matrices yield a number of reaction mechanisms (linear scheme with back reactions, branched schemes with equilibrium steps, and a variety of square models) consistent with the photolysis data at 25 degrees C. The problems associated with isospectral intermediates (meta I-380 and meta II) are treated successfully with this method.
Full text
PDF














Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chen E., Lapko V. N., Lewis J. W., Song P. S., Kliger D. S. Mechanism of native oat phytochrome photoreversion: a time-resolved absorption investigation. Biochemistry. 1996 Jan 23;35(3):843–850. doi: 10.1021/bi952115z. [DOI] [PubMed] [Google Scholar]
- Henry E. R. The use of matrix methods in the modeling of spectroscopic data sets. Biophys J. 1997 Feb;72(2 Pt 1):652–673. doi: 10.1016/s0006-3495(97)78703-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hofrichter J., Sommer J. H., Henry E. R., Eaton W. A. Nanosecond absorption spectroscopy of hemoglobin: elementary processes in kinetic cooperativity. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2235–2239. doi: 10.1073/pnas.80.8.2235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hug S. J., Lewis J. W., Einterz C. M., Thorgeirsson T. E., Kliger D. S. Nanosecond photolysis of rhodopsin: evidence for a new, blue-shifted intermediate. Biochemistry. 1990 Feb 13;29(6):1475–1485. doi: 10.1021/bi00458a019. [DOI] [PubMed] [Google Scholar]
- Linschitz H., Kasche V. The kinetics of phytochrome conversion. J Biol Chem. 1966 Jul 25;241(14):3395–3403. [PubMed] [Google Scholar]
- Lozier R. H., Xie A., Hofrichter J., Clore G. M. Reversible steps in the bacteriorhodopsin photocycle. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3610–3614. doi: 10.1073/pnas.89.8.3610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MATTHEWS R. G., HUBBARD R., BROWN P. K., WALD G. TAUTOMERIC FORMS OF METARHODOPSIN. J Gen Physiol. 1963 Nov;47:215–240. doi: 10.1085/jgp.47.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagle J. F. Solving complex photocycle kinetics. Theory and direct method. Biophys J. 1991 Feb;59(2):476–487. doi: 10.1016/S0006-3495(91)82241-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagle J. F., Zimanyi L., Lanyi J. K. Testing BR photocycle kinetics. Biophys J. 1995 Apr;68(4):1490–1499. doi: 10.1016/S0006-3495(95)80321-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Straume M., Mitchell D. C., Miller J. L., Litman B. J. Interconversion of metarhodopsins I and II: a branched photointermediate decay model. Biochemistry. 1990 Oct 2;29(39):9135–9142. doi: 10.1021/bi00491a006. [DOI] [PubMed] [Google Scholar]
- Thorgeirsson T. E., Lewis J. W., Wallace-Williams S. E., Kliger D. S. Effects of temperature on rhodopsin photointermediates from lumirhodopsin to metarhodopsin II. Biochemistry. 1993 Dec 21;32(50):13861–13872. doi: 10.1021/bi00213a015. [DOI] [PubMed] [Google Scholar]
- Thorgeirsson T. E., Lewis J. W., Wallace-Williams S. E., Kliger D. S. Photolysis of rhodopsin results in deprotonation of its retinal Schiff's base prior to formation of metarhodopsin II. Photochem Photobiol. 1992 Dec;56(6):1135–1144. doi: 10.1111/j.1751-1097.1992.tb09738.x. [DOI] [PubMed] [Google Scholar]
- Váró G., Lanyi J. K. Kinetic and spectroscopic evidence for an irreversible step between deprotonation and reprotonation of the Schiff base in the bacteriorhodopsin photocycle. Biochemistry. 1991 May 21;30(20):5008–5015. doi: 10.1021/bi00234a024. [DOI] [PubMed] [Google Scholar]