Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1997 Aug;73(2):733–745. doi: 10.1016/S0006-3495(97)78106-2

The monovalent cation "leak" transport in human erythrocytes: an electroneutral exchange process.

S Richter 1, J Hamann 1, D Kummerow 1, I Bernhardt 1
PMCID: PMC1180970  PMID: 9251790

Abstract

The mechanism of the "ground permeability" of the human erythrocyte membrane for K+ and Na+ was investigated with respect to a possible involvement of a previously unidentified specific transport pathway, because earlier studies showed that it cannot be explained on the basis of simple electrodiffusion. In particular, we analyzed and described the increase in the (ouabain+bumetanide+EGTA)-insensitive unidirectional K+ and Na+ influxes as well as effluxes (defined as "leak" fluxes) observed in erythrocytes suspended in low-ionic-strength media. Using a carrier-type model and taking into account the influence of the ionic strength on the outer surface potential according to the Gouy-Chapman theory (i.e., the ion concentration near the membrane surface), we are able to describe the altered "leak" fluxes as an electroneutral process. In addition, we can show indirectly that this electroneutral flux is due to an exchange of monovalent cations with protons. This pathway is different from the amiloride-sensitive Na+/H+ exchanger present in the human red blood cell membrane and can be characterized as a K+(Na+)/H+ exchanger.

Full text

PDF
733

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adorante J. S., Cala P. M. Activation of electroneutral K flux in Amphiuma red blood cells by N-ethylmaleimide. Distinction between K/H exchange and KCl cotransport. J Gen Physiol. 1987 Aug;90(2):209–227. doi: 10.1085/jgp.90.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aronson P. S. Kinetic properties of the plasma membrane Na+-H+ exchanger. Annu Rev Physiol. 1985;47:545–560. doi: 10.1146/annurev.ph.47.030185.002553. [DOI] [PubMed] [Google Scholar]
  3. Bernhardt I., Donath E., Glaser R. Influence of surface charge and transmembrane potential on rubidium-86 efflux of human red blood cells. J Membr Biol. 1984;78(3):249–255. doi: 10.1007/BF01925972. [DOI] [PubMed] [Google Scholar]
  4. Bernhardt I., Hall A. C., Ellory J. C. Effects of low ionic strength media on passive human red cell monovalent cation transport. J Physiol. 1991 Mar;434:489–506. doi: 10.1113/jphysiol.1991.sp018482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carolin D. A., Maizels M. Effect of the duration of loading lactose-treated red cells with cations on the rate of subsequent cation efflux. J Physiol. 1965 Jul;179(1):54–94. doi: 10.1113/jphysiol.1965.sp007649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chipperfield A. R., Shennan D. B. The influence of pH and membrane potential on passive Na+ and K+ fluxes in human red blood cells. Biochim Biophys Acta. 1986 May 29;886(3):373–382. doi: 10.1016/0167-4889(86)90172-2. [DOI] [PubMed] [Google Scholar]
  7. Dani J. A. Ion-channel entrances influence permeation. Net charge, size, shape, and binding considerations. Biophys J. 1986 Mar;49(3):607–618. doi: 10.1016/S0006-3495(86)83688-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davson H. Studies on the permeability of erythrocytes: The effect of reducing the salt content of the medium surrounding the cell. Biochem J. 1939 Mar;33(3):389–401. doi: 10.1042/bj0330389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Denner K., Heinrich R., Bernhardt I. Carrier-mediated residual K+ and Na+ transport of human red blood cells. J Membr Biol. 1993 Mar;132(2):137–145. doi: 10.1007/BF00239003. [DOI] [PubMed] [Google Scholar]
  10. Elinder F., Madeja M., Arhem P. Surface Charges of K channels. Effects of strontium on five cloned channels expressed in Xenopus oocytes. J Gen Physiol. 1996 Oct;108(4):325–332. doi: 10.1085/jgp.108.4.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fievet B., Guizouarn H., Pellissier B., Garcia-Romeu F., Motais R. Evidence for a K(+)-H+ exchange in trout red blood cells. J Physiol. 1993 Mar;462:597–607. doi: 10.1113/jphysiol.1993.sp019571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Glaser R. The shape of red blood cells as a function of membrane potential and temperature. J Membr Biol. 1979 Dec 31;51(3-4):217–228. doi: 10.1007/BF01869085. [DOI] [PubMed] [Google Scholar]
  13. Green W. N., Andersen O. S. Surface charges and ion channel function. Annu Rev Physiol. 1991;53:341–359. doi: 10.1146/annurev.ph.53.030191.002013. [DOI] [PubMed] [Google Scholar]
  14. Hall A. C., Ellory J. C. Evidence for the presence of volume-sensitive KCl transport in 'young' human red cells. Biochim Biophys Acta. 1986 Jun 26;858(2):317–320. doi: 10.1016/0005-2736(86)90338-x. [DOI] [PubMed] [Google Scholar]
  15. Isomaa B., Hägerstrand H., Paatero G., Engblom A. C. Permeability alterations and antihaemolysis induced by amphiphiles in human erythrocytes. Biochim Biophys Acta. 1986 Sep 11;860(3):510–524. doi: 10.1016/0005-2736(86)90548-1. [DOI] [PubMed] [Google Scholar]
  16. Jezek P., Mahdi F., Garlid K. D. Reconstitution of the beef heart and rat liver mitochondrial K+/H+ (Na+/H+) antiporter. Quantitation of K+ transport with the novel fluorescent probe, PBFI. J Biol Chem. 1990 Jun 25;265(18):10522–10526. [PubMed] [Google Scholar]
  17. Joiner C. H., Platt O. S., Lux S. E., 4th Cation depletion by the sodium pump in red cells with pathologic cation leaks. Sickle cells and xerocytes. J Clin Invest. 1986 Dec;78(6):1487–1496. doi: 10.1172/JCI112740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jones G. S., Knauf P. A. Mechanism of the increase in cation permeability of human erythrocytes in low-chloride media. Involvement of the anion transport protein capnophorin. J Gen Physiol. 1985 Nov;86(5):721–738. doi: 10.1085/jgp.86.5.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jordan P. C. How pore mouth charge distributions alter the permeability of transmembrane ionic channels. Biophys J. 1987 Feb;51(2):297–311. doi: 10.1016/S0006-3495(87)83336-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LaCelle P. L., Rothsteto A. The passive permeability of the red blood cell in cations. J Gen Physiol. 1966 Sep;50(1):171–188. doi: 10.1085/jgp.50.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lew V. L., Bookchin R. M. Volume, pH, and ion-content regulation in human red cells: analysis of transient behavior with an integrated model. J Membr Biol. 1986;92(1):57–74. doi: 10.1007/BF01869016. [DOI] [PubMed] [Google Scholar]
  22. McLaughlin S. G., Szabo G., Eisenman G., Ciani S. M. Surface charge and the conductance of phospholipid membranes. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1268–1275. doi: 10.1073/pnas.67.3.1268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nelson A. P., McQuarrie D. A. The effect of discrete charges on the electrical properties of a membrane. I. J Theor Biol. 1975 Nov;55(1):13–27. doi: 10.1016/s0022-5193(75)80106-8. [DOI] [PubMed] [Google Scholar]
  24. Neumcke B. Ion flux across lipid bilayer membranes with charged surfaces. Biophysik. 1970;6(3):231–240. doi: 10.1007/BF01189084. [DOI] [PubMed] [Google Scholar]
  25. Riddell F. G., Arumugam S. Surface charge effects upon membrane transport processes: the effects of surface charge on the monensin-mediated transport of lithium ions through phospholipid bilayers studied by 7Li-NMR spectroscopy. Biochim Biophys Acta. 1988 Nov 3;945(1):65–72. doi: 10.1016/0005-2736(88)90363-x. [DOI] [PubMed] [Google Scholar]
  26. Shoemaker D. G., Bender C. A., Gunn R. B. Sodium-phosphate cotransport in human red blood cells. Kinetics and role in membrane metabolism. J Gen Physiol. 1988 Oct;92(4):449–474. doi: 10.1085/jgp.92.4.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stewart G. W., Ellory J. C. A family with mild hereditary xerocytosis showing high membrane cation permeability at low temperatures. Clin Sci (Lond) 1985 Sep;69(3):309–319. doi: 10.1042/cs0690309. [DOI] [PubMed] [Google Scholar]
  28. Theuvenet A. P., Borst-Pauwels G. W. The influence of surface charge on the kinetics of ion-translocation across biological membranes. J Theor Biol. 1976 Apr;57(2):313–329. doi: 10.1016/0022-5193(76)90004-7. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES