Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1997 Aug;73(2):746–756. doi: 10.1016/S0006-3495(97)78107-4

The inner membrane barrier of lipid membranes experienced by the valinomycin/Rb+ complex: charge pulse experiments at high membrane voltages.

H Bihler 1, G Stark 1
PMCID: PMC1180971  PMID: 9251791

Abstract

The kinetic analysis of charge pulse experiments at planar lipid membranes in the presence of macrocyclic ion carriers has been limited so far to the low voltage range, where, under certain simplifying conditions, an analytical solution is available. In the present study, initial voltages of up to 300 mV were applied to the membrane, and the voltage decay through the conductive pathways of the membrane was followed as a function of time. The system of differential equations derived from the transport model was solved numerically and was compared with the experimental data. The generalized kinetic analysis of charge pulse experiments and of steady-state current-voltage curves was used to study the voltage dependence of the individual transport steps and to obtain information on the shape of the inner membrane barrier. The data were found to be consistent with a comparatively broad inner barrier such as a trapezoidal barrier or an image force barrier. The inner barrier was found to sense 70-76% of the voltage applied to the membrane. As a consequence, 24-30% of the voltage acts on the two interfacial barriers between membrane and water. The data refer to membranes formed from monoolein, monoeicosenoin, or monoerucin in n-decane.

Full text

PDF
746

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen O. S., Fuchs M. Potential energy barriers to ion transport within lipid bilayers. Studies with tetraphenylborate. Biophys J. 1975 Aug;15(8):795–830. doi: 10.1016/S0006-3495(75)85856-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barth C., Bihler H., Wilhelm M., Stark G. Application of a fast charge-pulse technique to study the effect of the dipolar substance 2,4-dichlorophenoxyacetic acid on the kinetics of valinomycin mediated K(+)-transport across monoolein membranes. Biophys Chem. 1995 Apr;54(2):127–136. doi: 10.1016/0301-4622(94)00112-w. [DOI] [PubMed] [Google Scholar]
  3. Benz R., Fröhlich O., Läuger P. Influence of membrane structure on the kinetics of carrier-mediated ion transport through lipid bilayers. Biochim Biophys Acta. 1977 Feb 4;464(3):465–481. doi: 10.1016/0005-2736(77)90023-2. [DOI] [PubMed] [Google Scholar]
  4. Benz R., Janko K. Voltage-induce capacitance relaxation of lipid bilayer membranes. Effects of membrane composition. Biochim Biophys Acta. 1976 Dec 14;455(3):721–738. doi: 10.1016/0005-2736(76)90043-2. [DOI] [PubMed] [Google Scholar]
  5. Benz R., Kolb H. A., Läuger P., Stark G. Ion carriers in planar bilayers: relaxation techniques and noise analysis. Methods Enzymol. 1989;171:274–286. doi: 10.1016/s0076-6879(89)71017-x. [DOI] [PubMed] [Google Scholar]
  6. Benz R., Läuger P., Janko K. Transport kinetics of hydrophobic ions in lipid bilayer membranes. Charge-pulse relaxation studies. Biochim Biophys Acta. 1976 Dec 14;455(3):701–720. doi: 10.1016/0005-2736(76)90042-0. [DOI] [PubMed] [Google Scholar]
  7. Benz R., Läuger P. Kinetic analysis of carrier-mediated ion transport by the charge-pulse technique. J Membr Biol. 1976 Jun 9;27(1-2):171–191. doi: 10.1007/BF01869135. [DOI] [PubMed] [Google Scholar]
  8. Benz R., McLaughlin S. The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone). Biophys J. 1983 Mar;41(3):381–398. doi: 10.1016/S0006-3495(83)84449-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ciani S. Influence of molecular variations of ionophore and lipid on the selective ion permeability of membranes: II. A theoretical model. J Membr Biol. 1976 Dec 25;30(1):45–63. doi: 10.1007/BF01869659. [DOI] [PubMed] [Google Scholar]
  10. Feldberg S. W., Kissel G. Charge pulse studies of transport phenomena in bilayer membranes. I. Steady-state measurements of actin- and valinomycin-mediated transport in glycerol monooleate bilayers. J Membr Biol. 1975;20(3-4):269–300. doi: 10.1007/BF01870639. [DOI] [PubMed] [Google Scholar]
  11. Grell E., Funck T. Dynamic properties and membrane activity of ion specific antibiotics. J Supramol Struct. 1973;1(4):307–335. doi: 10.1002/jss.400010408. [DOI] [PubMed] [Google Scholar]
  12. Haydon D. A., Hladky S. B. Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems. Q Rev Biophys. 1972 May;5(2):187–282. doi: 10.1017/s0033583500000883. [DOI] [PubMed] [Google Scholar]
  13. Hladky S. B. Kinetic analysis of lipid soluble ions and carriers. Q Rev Biophys. 1992 Nov;25(4):459–475. doi: 10.1017/s0033583500004376. [DOI] [PubMed] [Google Scholar]
  14. Hladky S. B., Leung J. C., Fitzgerald W. J. The mechanism of ion conduction by valinomycin: analysis of charge pulse responses. Biophys J. 1995 Nov;69(5):1758–1772. doi: 10.1016/S0006-3495(95)80046-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hladky S. B. The energy barriers to ion transport by nonactin across thin lipid membranes. Biochim Biophys Acta. 1974 May 30;352(1):71–85. doi: 10.1016/0005-2736(74)90180-1. [DOI] [PubMed] [Google Scholar]
  16. Knoll W., Stark G. An extended kinetic analysis of valinomycin-induced Rb-transport through monoglyceride membranes. J Membr Biol. 1975;25(3-4):249–270. doi: 10.1007/BF01868578. [DOI] [PubMed] [Google Scholar]
  17. Krasne S., Eisenman G. Influence of molecular variations of ionophore and lipid on the selective ion permeability of membranes: I. Tetranactin and the methylation of nonactin-type carriers. J Membr Biol. 1976 Dec 25;30(1):1–44. doi: 10.1007/BF01869658. [DOI] [PubMed] [Google Scholar]
  18. Lapointe J. Y., Laprade R. Kinetics of carrier-mediated ion transport in two new types of solvent-free lipid bilayers. Biophys J. 1982 Aug;39(2):141–150. doi: 10.1016/S0006-3495(82)84501-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Läuger P., Benz R., Stark G., Bamberg E., Jordan P. C., Fahr A., Brock W. Relaxation studies of ion transport systems in lipid bilayer membranes. Q Rev Biophys. 1981 Nov;14(4):513–598. doi: 10.1017/s003358350000247x. [DOI] [PubMed] [Google Scholar]
  20. Läuger P., Stark G. Kinetics of carrier-mediated ion transport across lipid bilayer membranes. Biochim Biophys Acta. 1970 Sep 15;211(3):458–466. doi: 10.1016/0005-2736(70)90251-8. [DOI] [PubMed] [Google Scholar]
  21. Neumcke B., Läuger P. Nonlinear electrical effects in lipid bilayer membranes. II. Integration of the generalized Nernst-Planck equations. Biophys J. 1969 Sep;9(9):1160–1170. doi: 10.1016/S0006-3495(69)86443-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stark G., Ketterer B., Benz R., Läuger P. The rate constants of valinomycin-mediated ion transport through thin lipid membranes. Biophys J. 1971 Dec;11(12):981–994. doi: 10.1016/S0006-3495(71)86272-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Szabo G., Eisenman G., Laprade R., Ciani S. M., Krasne S. Experimentally observed effects of carriers on the electrical properties of bilayer membranes--equilibrium domain. With a contribution on the molecular basis of ion selectivity. Membranes. 1973;2:179–328. [PubMed] [Google Scholar]
  24. van Dijk C., de Levie R. An experimental comparison between the continuum and single jump descriptions of nonactin-mediated potassium transport through black lipid membranes. Biophys J. 1985 Jul;48(1):125–136. doi: 10.1016/S0006-3495(85)83766-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES