Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1997 Aug;73(2):789–797. doi: 10.1016/S0006-3495(97)78111-6

Independent gating of single pores in CLC-0 chloride channels.

U Ludewig 1, M Pusch 1, T J Jentsch 1
PMCID: PMC1180975  PMID: 9251795

Abstract

The Cl- channel from the Torpedo electric organ, CLC-0, is the prototype of a large gene family of Cl- channels. At the single-channel level, CLC-0 shows a "double-barreled" behavior. Recently it was shown that CLC-0 is a dimer, and it was suggested that each subunit forms a single pore. The two protopores are gated individually by a fast voltage and anion-dependent gating mechanism. A slower common gating mechanism operates on both pores simultaneously. Previously, wild-type/mutant heteromeric channels had been constructed that display a large wild-type pore and small mutant pore. Here we use patch-clamp recording of single wild-type and mutant CLC-0 channels to investigate in detail the dependence of the gating of one protopore on the physically attached neighboring pore. No difference in rate constants of opening and closing of protopores could be found comparing homomeric wild-type and heteromeric wild-type/mutant channels. In addition, detailed kinetic analysis reveals that gating of single subunits is not correlated with the gating of the neighboring subunit. The results are consistent with the view that permeation and fast gating of individual pores are fully independent of the neighboring pore. Because the two subunits are associated in a common protein complex, opening and closing transitions of individual pores are probably due to only small conformational changes in each pore. In addition to the fast and slow gating mechanisms known previously for CLC-0, in the course of this study we occasionally observed an additional gating process that led to relatively long closures of single pores.

Full text

PDF
789

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer C. K., Steinmeyer K., Schwarz J. R., Jentsch T. J. Completely functional double-barreled chloride channel expressed from a single Torpedo cDNA. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11052–11056. doi: 10.1073/pnas.88.24.11052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen T. Y., Miller C. Nonequilibrium gating and voltage dependence of the ClC-0 Cl- channel. J Gen Physiol. 1996 Oct;108(4):237–250. doi: 10.1085/jgp.108.4.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fisher S. E., Black G. C., Lloyd S. E., Hatchwell E., Wrong O., Thakker R. V., Craig I. W. Isolation and partial characterization of a chloride channel gene which is expressed in kidney and is a candidate for Dent's disease (an X-linked hereditary nephrolithiasis). Hum Mol Genet. 1994 Nov;3(11):2053–2059. [PubMed] [Google Scholar]
  4. George A. L., Jr, Crackower M. A., Abdalla J. A., Hudson A. J., Ebers G. C. Molecular basis of Thomsen's disease (autosomal dominant myotonia congenita). Nat Genet. 1993 Apr;3(4):305–310. doi: 10.1038/ng0493-305. [DOI] [PubMed] [Google Scholar]
  5. Gründer S., Thiemann A., Pusch M., Jentsch T. J. Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature. 1992 Dec 24;360(6406):759–762. doi: 10.1038/360759a0. [DOI] [PubMed] [Google Scholar]
  6. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  7. Hanke W., Miller C. Single chloride channels from Torpedo electroplax. Activation by protons. J Gen Physiol. 1983 Jul;82(1):25–45. doi: 10.1085/jgp.82.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jentsch T. J. Chloride channels: a molecular perspective. Curr Opin Neurobiol. 1996 Jun;6(3):303–310. doi: 10.1016/s0959-4388(96)80112-7. [DOI] [PubMed] [Google Scholar]
  9. Jentsch T. J., Günther W., Pusch M., Schwappach B. Properties of voltage-gated chloride channels of the ClC gene family. J Physiol. 1995 Jan;482:19S–25S. doi: 10.1113/jphysiol.1995.sp020560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jentsch T. J., Steinmeyer K., Schwarz G. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature. 1990 Dec 6;348(6301):510–514. doi: 10.1038/348510a0. [DOI] [PubMed] [Google Scholar]
  11. Koch M. C., Steinmeyer K., Lorenz C., Ricker K., Wolf F., Otto M., Zoll B., Lehmann-Horn F., Grzeschik K. H., Jentsch T. J. The skeletal muscle chloride channel in dominant and recessive human myotonia. Science. 1992 Aug 7;257(5071):797–800. doi: 10.1126/science.1379744. [DOI] [PubMed] [Google Scholar]
  12. Labarca P., Rice J. A., Fredkin D. R., Montal M. Kinetic analysis of channel gating. Application to the cholinergic receptor channel and the chloride channel from Torpedo californica. Biophys J. 1985 Apr;47(4):469–478. doi: 10.1016/S0006-3495(85)83939-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lloyd S. E., Pearce S. H., Fisher S. E., Steinmeyer K., Schwappach B., Scheinman S. J., Harding B., Bolino A., Devoto M., Goodyer P. A common molecular basis for three inherited kidney stone diseases. Nature. 1996 Feb 1;379(6564):445–449. doi: 10.1038/379445a0. [DOI] [PubMed] [Google Scholar]
  14. Ludewig U., Jentsch T. J., Pusch M. Analysis of a protein region involved in permeation and gating of the voltage-gated Torpedo chloride channel ClC-0. J Physiol. 1997 Feb 1;498(Pt 3):691–702. doi: 10.1113/jphysiol.1997.sp021893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ludewig U., Pusch M., Jentsch T. J. Two physically distinct pores in the dimeric ClC-0 chloride channel. Nature. 1996 Sep 26;383(6598):340–343. doi: 10.1038/383340a0. [DOI] [PubMed] [Google Scholar]
  16. Läuger P. Structural fluctuations and current noise of ionic channels. Biophys J. 1985 Sep;48(3):369–373. doi: 10.1016/S0006-3495(85)83793-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Middleton R. E., Pheasant D. J., Miller C. Homodimeric architecture of a ClC-type chloride ion channel. Nature. 1996 Sep 26;383(6598):337–340. doi: 10.1038/383337a0. [DOI] [PubMed] [Google Scholar]
  18. Miller C. Open-state substructure of single chloride channels from Torpedo electroplax. Philos Trans R Soc Lond B Biol Sci. 1982 Dec 1;299(1097):401–411. doi: 10.1098/rstb.1982.0140. [DOI] [PubMed] [Google Scholar]
  19. Miller C., White M. M. Dimeric structure of single chloride channels from Torpedo electroplax. Proc Natl Acad Sci U S A. 1984 May;81(9):2772–2775. doi: 10.1073/pnas.81.9.2772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pusch M., Jentsch T. J. Molecular physiology of voltage-gated chloride channels. Physiol Rev. 1994 Oct;74(4):813–827. doi: 10.1152/physrev.1994.74.4.813. [DOI] [PubMed] [Google Scholar]
  21. Pusch M., Ludewig U., Jentsch T. J. Temperature dependence of fast and slow gating relaxations of ClC-0 chloride channels. J Gen Physiol. 1997 Jan;109(1):105–116. doi: 10.1085/jgp.109.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pusch M., Ludewig U., Rehfeldt A., Jentsch T. J. Gating of the voltage-dependent chloride channel CIC-0 by the permeant anion. Nature. 1995 Feb 9;373(6514):527–531. doi: 10.1038/373527a0. [DOI] [PubMed] [Google Scholar]
  23. Richard E. A., Miller C. Steady-state coupling of ion-channel conformations to a transmembrane ion gradient. Science. 1990 Mar 9;247(4947):1208–1210. doi: 10.1126/science.2156338. [DOI] [PubMed] [Google Scholar]
  24. Sigworth F. J., Sine S. M. Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys J. 1987 Dec;52(6):1047–1054. doi: 10.1016/S0006-3495(87)83298-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Staley K., Smith R., Schaack J., Wilcox C., Jentsch T. J. Alteration of GABAA receptor function following gene transfer of the CLC-2 chloride channel. Neuron. 1996 Sep;17(3):543–551. doi: 10.1016/s0896-6273(00)80186-5. [DOI] [PubMed] [Google Scholar]
  26. Steinmeyer K., Klocke R., Ortland C., Gronemeier M., Jockusch H., Gründer S., Jentsch T. J. Inactivation of muscle chloride channel by transposon insertion in myotonic mice. Nature. 1991 Nov 28;354(6351):304–308. doi: 10.1038/354304a0. [DOI] [PubMed] [Google Scholar]
  27. Steinmeyer K., Lorenz C., Pusch M., Koch M. C., Jentsch T. J. Multimeric structure of ClC-1 chloride channel revealed by mutations in dominant myotonia congenita (Thomsen). EMBO J. 1994 Feb 15;13(4):737–743. doi: 10.1002/j.1460-2075.1994.tb06315.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Steinmeyer K., Ortland C., Jentsch T. J. Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel. Nature. 1991 Nov 28;354(6351):301–304. doi: 10.1038/354301a0. [DOI] [PubMed] [Google Scholar]
  29. Steinmeyer K., Schwappach B., Bens M., Vandewalle A., Jentsch T. J. Cloning and functional expression of rat CLC-5, a chloride channel related to kidney disease. J Biol Chem. 1995 Dec 29;270(52):31172–31177. doi: 10.1074/jbc.270.52.31172. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES