Abstract
We have studied the local dynamics of calf thymus double-helical DNA by means of an "optical labeling" technique. The study has been performed by measuring the visible absorption band of the cationic dye ethidium bromide, both free in solution and bound to DNA, in the temperature interval 360-30 K and in two different solvent conditions. The temperature dependence of the absorption line shape has been analyzed within the framework of the vibronic coupling theory, to extract information on the dynamic properties of the system; comparison of the thermal behavior of the absorption band of free and DNA-bound ethidium bromide gave information on the local dynamics of the double helix in the proximity of the chromophore. For the dye free in solution, large spectral heterogeneity and coupling to a "bath" of low-frequency (soft) modes is observed; moreover, anharmonic motions become evident at suitably high temperatures. The average frequency of the soft modes and the amplitude of anharmonic motions depend upon solvent composition. For the DNA-bound dye, at low temperatures, heterogeneity is decreased, the average frequency of the soft modes is increased, and anharmonic motions are hindered. However, a new dynamic regime characterized by a large increase in anharmonic motions is observed at temperatures higher than approximately 280 K. The DNA double helix therefore appears to provide, at low temperatures, a rather rigid environment for the bound chromophore, in which conformational heterogeneity is reduced and low-frequency motions (both harmonic vibrations and anharmonic contributions) are hindered. The system becomes anharmonic at approximately 180 K; however, above approximately 280 K, anharmonicity starts to increase much more rapidly than for the dye free in solution; this can be attributed to the onset of wobbling of the dye in its intercalation site, which is likely connected with the onset of (functionally relevant) DNA motions, involving local opening/unwinding of the double helix. As shown by parallel measurements of the melting curves, these motions precede the melting of the double helix and depend upon solvent composition much more than does the melting itself.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baldini G., Varani G. The role of the solvent on the binding of ethidium bromide to DNA in alcohol-water mixtures. Biopolymers. 1986 Nov;25(11):2187–2208. doi: 10.1002/bip.360251111. [DOI] [PubMed] [Google Scholar]
- Boffi A., Verzili D., Chiancone E., Leone M., Cupane A., Militello V., Vitrano E., Cordone L., Yu W., Di Iorio E. E. Stereodynamic properties of the cooperative homodimeric Scapharca inaequivalvis hemoglobin studied through optical absorption spectroscopy and ligand rebinding kinetics. Biophys J. 1994 Oct;67(4):1713–1723. doi: 10.1016/S0006-3495(94)80645-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bresloff J. L., Crothers D. M. DNA-ethidium reaction kinetics: demonstration of direct ligand transfer between DNA binding sites. J Mol Biol. 1975 Jun 15;95(1):103–123. doi: 10.1016/0022-2836(75)90339-3. [DOI] [PubMed] [Google Scholar]
- Collini M., Chirico G., Baldini G., Bianchi M. E. Conformation of short DNA fragments by modulated fluorescence polarization anisotropy. Biopolymers. 1995 Aug;36(2):211–225. doi: 10.1002/bip.360360209. [DOI] [PubMed] [Google Scholar]
- Cordone L., Cupane A., Leone M., Vitrano E. Optical absorption spectra of deoxy- and oxyhemoglobin in the temperature range 300-20 K. Relation with protein dynamics. Biophys Chem. 1986 Aug;24(3):259–275. doi: 10.1016/0301-4622(86)85031-1. [DOI] [PubMed] [Google Scholar]
- Cupane A., Leone M., Militello V., Stroppolo M. E., Polticelli F., Desideri A. Low-temperature optical spectroscopy of cobalt in Cu,Co superoxide dismutase: a structural dynamics study of the solvent-unaccessible metal site. Biochemistry. 1995 Dec 19;34(50):16313–16319. doi: 10.1021/bi00050a011. [DOI] [PubMed] [Google Scholar]
- Cupane A., Leone M., Militello V., Stroppolo M. E., Polticelli F., Desideri A. Low-temperature optical spectroscopy of native and azide-reacted bovine Cu,Zn superoxide dismutase. A structural dynamics study. Biochemistry. 1994 Dec 20;33(50):15103–15109. doi: 10.1021/bi00254a020. [DOI] [PubMed] [Google Scholar]
- Cupane A., Leone M., Vitrano E., Cordone L., Hiltpold U. R., Winterhalter K. H., Yu W., Di Iorio E. E. Structure-dynamics-function relationships in Asian elephant (Elephas maximus) myoglobin. An optical spectroscopy and flash photolysis study on functionally important motions. Biophys J. 1993 Dec;65(6):2461–2472. doi: 10.1016/S0006-3495(93)81311-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cupane A., Leone M., Vitrano E., Cordone L. Low temperature optical absorption spectroscopy: an approach to the study of stereodynamic properties of hemeproteins. Eur Biophys J. 1995;23(6):385–398. doi: 10.1007/BF00196825. [DOI] [PubMed] [Google Scholar]
- Di Pace A., Cupane A., Leone M., Vitrano E., Cordone L. Protein dynamics. Vibrational coupling, spectral broadening mechanisms, and anharmonicity effects in carbonmonoxy heme proteins studied by the temperature dependence of the Soret band lineshape. Biophys J. 1992 Aug;63(2):475–484. doi: 10.1016/S0006-3495(92)81606-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giacomoni P. U., Le Bret M. Electronic structure of ethidium bromide. FEBS Lett. 1973 Feb 1;29(3):227–230. doi: 10.1016/0014-5793(73)80025-0. [DOI] [PubMed] [Google Scholar]
- Jain S. C., Tsai C. C., Sobell H. M. Visualization of drug-nucleic acid interactions at atomic resolution. II. Structure of an ethidium/dinucleoside monophosphate crystalline complex, ethidium:5-iodocytidylyl (3'-5') guanosine. J Mol Biol. 1977 Aug 15;114(3):317–331. doi: 10.1016/0022-2836(77)90253-4. [DOI] [PubMed] [Google Scholar]
- Leone M., Cupane A., Cordone L. Low temperature optical spectroscopy of low-spin ferric hemeproteins. Eur Biophys J. 1996;24(3):117–124. doi: 10.1007/BF00180268. [DOI] [PubMed] [Google Scholar]
- Leone M., Cupane A., Militello V., Cordone L. Thermal broadening of the Soret band in heme complexes and in heme-proteins: role of iron dynamics. Eur Biophys J. 1994;23(5):349–352. doi: 10.1007/BF00188658. [DOI] [PubMed] [Google Scholar]
- Lybrand T., Kollman P. Molecular mechanical calculations on the interaction of ethidium cation with double-helical DNA. Biopolymers. 1985 Oct;24(10):1863–1879. doi: 10.1002/bip.360241003. [DOI] [PubMed] [Google Scholar]
- Melchers B., Knapp E. W., Parak F., Cordone L., Cupane A., Leone M. Structural fluctuations of myoglobin from normal-modes, Mössbauer, Raman, and absorption spectroscopy. Biophys J. 1996 May;70(5):2092–2099. doi: 10.1016/S0006-3495(96)79775-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Militello V., Cupane A., Leone M., Brinigar W. S., Lu A. L., Fronticelli C. Dynamic properties of some beta-chain mutant hemoglobins. Proteins. 1995 May;22(1):12–19. doi: 10.1002/prot.340220103. [DOI] [PubMed] [Google Scholar]
- Nuutero S., Fujimoto B. S., Flynn P. F., Reid B. R., Ribeiro N. S., Schurr J. M. The amplitude of local angular motion of purines in DNA in solution. Biopolymers. 1994 Apr;34(4):463–480. doi: 10.1002/bip.360340404. [DOI] [PubMed] [Google Scholar]
- Rudolph B. R., Case D. A. Harmonic dynamics of a DNA hexamer in the absence and presence of the intercalator ethidium. Biopolymers. 1989 Apr;28(4):851–871. doi: 10.1002/bip.360280406. [DOI] [PubMed] [Google Scholar]
- Shibata J. H., Fujimoto B. S., Schurr J. M. Rotational dynamics of DNA from 10(-10) to 10(-5) seconds: comparison of theory with optical experiments. Biopolymers. 1985 Oct;24(10):1909–1930. doi: 10.1002/bip.360241006. [DOI] [PubMed] [Google Scholar]
- Tsai C. C., Jain S. C., Sobell H. M. Visualization of drug-nucleic acid interactions at atomic resolution. I. Structure of an ethidium/dinucleoside monophosphate crystalline complex, ethidium:5-iodouridylyl (3'-5') adenosine. J Mol Biol. 1977 Aug 15;114(3):301–315. doi: 10.1016/0022-2836(77)90252-2. [DOI] [PubMed] [Google Scholar]
- Varani G., Della Torre L., Baldini G. Nonspecific interactions in dye binding to DNA. Influence of alcohols and amides. Biophys Chem. 1987 Dec;28(3):175–181. doi: 10.1016/0301-4622(87)80087-x. [DOI] [PubMed] [Google Scholar]