Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1997 Aug;73(2):1056–1072. doi: 10.1016/S0006-3495(97)78138-4

Formation of stable polypeptide monolayers at interfaces: controlling molecular conformation and orientation.

M Boncheva 1, H Vogel 1
PMCID: PMC1181002  PMID: 9251822

Abstract

The molecular self-organization and structural properties of peptide assemblies at different interfaces, using either amphipathic or hydrophobic polypeptide helices, is described. The two peptides under investigation form stable monolayers on the water surface under the conservation of their molecular conformation, as studied by circular dichroism and polarization-modulation Fourier transform infrared (FTIR) spectroscopy. Using surface plasmon resonance and reflection-absorption FTIR, we show that such molecular layers can be transferred unaltered to solid substrates. Most importantly, the molecular orientation of the hydrophobic helices on solid supports such as gold can be controlled by choosing a particular procedure for the layer formation. The helices were oriented parallel to the interface in Langmuir-Blodgett monolayers, and perpendicular to the interface in self-assembled monolayers. Our reflection-absorption FTIR measurements have delivered for the first time direct experimental evidence for the molecular conformation and orientation of pure peptide monolayers. Suitable reference spectra of polypeptides with defined conformation and orientation are necessary to use this technique for the determination of the molecular orientation of peptides in monomolecular films. We have solved the problem for alpha-helical polypeptides by using bacteriorhodopsin as a reference in combination with synthetic alpha-helices of defined interfacial orientation. The present study shows the possibility of constructing immobilized peptide monolayers with predefined macroscopic properties and molecular structure by choosing the proper polypeptide amino acid sequence, the technique used for layer formation, and the supporting surface properties.

Full text

PDF
1056

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bechinger B. Towards membrane protein design: pH-sensitive topology of histidine-containing polypeptides. J Mol Biol. 1996 Nov 15;263(5):768–775. doi: 10.1006/jmbi.1996.0614. [DOI] [PubMed] [Google Scholar]
  2. Brooks C. L., 3rd, Brünger A., Karplus M. Active site dynamics in protein molecules: a stochastic boundary molecular-dynamics approach. Biopolymers. 1985 May;24(5):843–865. doi: 10.1002/bip.360240509. [DOI] [PubMed] [Google Scholar]
  3. Chakrabartty A., Schellman J. A., Baldwin R. L. Large differences in the helix propensities of alanine and glycine. Nature. 1991 Jun 13;351(6327):586–588. doi: 10.1038/351586a0. [DOI] [PubMed] [Google Scholar]
  4. Chen Y. H., Yang J. T., Chau K. H. Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry. 1974 Jul 30;13(16):3350–3359. doi: 10.1021/bi00713a027. [DOI] [PubMed] [Google Scholar]
  5. Cornut I., Desbat B., Turlet J. M., Dufourcq J. In situ study by polarization modulated Fourier transform infrared spectroscopy of the structure and orientation of lipids and amphipathic peptides at the air-water interface. Biophys J. 1996 Jan;70(1):305–312. doi: 10.1016/S0006-3495(96)79571-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DeGrado W. F., Lear J. D. Conformationally constrained alpha-helical peptide models for protein ion channels. Biopolymers. 1990 Jan;29(1):205–213. doi: 10.1002/bip.360290125. [DOI] [PubMed] [Google Scholar]
  7. Duschl C., Sévin-Landais A. F., Vogel H. Surface engineering: optimization of antigen presentation in self-assembled monolayers. Biophys J. 1996 Apr;70(4):1985–1995. doi: 10.1016/S0006-3495(96)79763-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Edholm O., Berger O., Jähnig F. Structure and fluctuations of bacteriorhodopsin in the purple membrane: a molecular dynamics study. J Mol Biol. 1995 Jun 30;250(1):94–111. doi: 10.1006/jmbi.1995.0361. [DOI] [PubMed] [Google Scholar]
  9. Goormaghtigh E., Cabiaux V., Ruysschaert J. M. Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. I. Assignments and model compounds. Subcell Biochem. 1994;23:329–362. doi: 10.1007/978-1-4615-1863-1_8. [DOI] [PubMed] [Google Scholar]
  10. Goormaghtigh E., Cabiaux V., Ruysschaert J. M. Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. II. Experimental aspects, side chain structure, and H/D exchange. Subcell Biochem. 1994;23:363–403. doi: 10.1007/978-1-4615-1863-1_9. [DOI] [PubMed] [Google Scholar]
  11. Grigorieff N., Ceska T. A., Downing K. H., Baldwin J. M., Henderson R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol. 1996 Jun 14;259(3):393–421. doi: 10.1006/jmbi.1996.0328. [DOI] [PubMed] [Google Scholar]
  12. Haris P. I., Chapman D. Fourier transform infrared spectra of the polypeptide alamethicin and a possible structural similarity with bacteriorhodopsin. Biochim Biophys Acta. 1988 Aug 18;943(2):375–380. doi: 10.1016/0005-2736(88)90571-8. [DOI] [PubMed] [Google Scholar]
  13. Haris P. I., Chapman D. The conformational analysis of peptides using Fourier transform IR spectroscopy. Biopolymers. 1995;37(4):251–263. doi: 10.1002/bip.360370404. [DOI] [PubMed] [Google Scholar]
  14. Lyu P. C., Liff M. I., Marky L. A., Kallenbach N. R. Side chain contributions to the stability of alpha-helical structure in peptides. Science. 1990 Nov 2;250(4981):669–673. doi: 10.1126/science.2237416. [DOI] [PubMed] [Google Scholar]
  15. Minor D. L., Jr, Kim P. S. Measurement of the beta-sheet-forming propensities of amino acids. Nature. 1994 Feb 17;367(6464):660–663. doi: 10.1038/367660a0. [DOI] [PubMed] [Google Scholar]
  16. Mrksich M., Whitesides G. M. Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annu Rev Biophys Biomol Struct. 1996;25:55–78. doi: 10.1146/annurev.bb.25.060196.000415. [DOI] [PubMed] [Google Scholar]
  17. Rothschild K. J., Clark N. A. Polarized infrared spectroscopy of oriented purple membrane. Biophys J. 1979 Mar;25(3):473–487. doi: 10.1016/S0006-3495(79)85317-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Smith L. J., Clark D. C. Measurement of the secondary structure of adsorbed protein by circular dichroism. 1. Measurements of the helix content of adsorbed melittin. Biochim Biophys Acta. 1992 May 22;1121(1-2):111–118. doi: 10.1016/0167-4838(92)90344-d. [DOI] [PubMed] [Google Scholar]
  19. Surewicz W. K., Mantsch H. H., Chapman D. Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry. 1993 Jan 19;32(2):389–394. doi: 10.1021/bi00053a001. [DOI] [PubMed] [Google Scholar]
  20. Thiaudière E., Soekarjo M., Kuchinka E., Kuhn A., Vogel H. Structural characterization of membrane insertion of M13 procoat, M13 coat, and Pf3 coat proteins. Biochemistry. 1993 Nov 16;32(45):12186–12196. doi: 10.1021/bi00096a031. [DOI] [PubMed] [Google Scholar]
  21. Tuchscherer G., Mutter M. Templates in protein de novo design. J Biotechnol. 1995 Jul 31;41(2-3):197–210. doi: 10.1016/0168-1656(95)00010-n. [DOI] [PubMed] [Google Scholar]
  22. Vogel H., Gärtner W. The secondary structure of bacteriorhodopsin determined by Raman and circular dichroism spectroscopy. J Biol Chem. 1987 Aug 25;262(24):11464–11469. [PubMed] [Google Scholar]
  23. Vogel H., Nilsson L., Rigler R., Meder S., Boheim G., Beck W., Kurth H. H., Jung G. Structural fluctuations between two conformational states of a transmembrane helical peptide are related to its channel-forming properties in planar lipid membranes. Eur J Biochem. 1993 Mar 1;212(2):305–313. doi: 10.1111/j.1432-1033.1993.tb17663.x. [DOI] [PubMed] [Google Scholar]
  24. Vogel H., Nilsson L., Rigler R., Voges K. P., Jung G. Structural fluctuations of a helical polypeptide traversing a lipid bilayer. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5067–5071. doi: 10.1073/pnas.85.14.5067. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES