Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1997 Sep;73(3):1184–1189. doi: 10.1016/S0006-3495(97)78150-5

Imaging and manipulation of high-density lipoproteins.

J W Carlson 1, A Jonas 1, S G Sligar 1
PMCID: PMC1181017  PMID: 9284285

Abstract

The atomic force microscope (AFM) has been used to image a variety of biological systems, but has rarely been applied to soluble protein-lipid complexes. One of the primary physiological protein-lipid complexes is the high-density lipoproteins (HDL), responsible for the transport of cholesterol from the peripheral tissues and other lipoproteins to the liver. We have used the AFM to directly image discoidal reconstituted HDL (rHDL) particles for the first time. The height of these particles is consistent with a phospholipid bilayer structure, but careful high resolution measurements of particle diameters has indicated that they fuse when adsorbed to mica. Furthermore, it has been demonstrated that the AFM can be used to initiate this bilayer fusion in a controlled manner, allowing the fabrication of stabilized, nanometer scale, phospholipid bilayer "domains."

Full text

PDF
1184

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson D., Small D. M., Shipley G. G. X-ray and neutron scattering studies of plasma lipoproteins. Ann N Y Acad Sci. 1980;348:284–298. doi: 10.1111/j.1749-6632.1980.tb21308.x. [DOI] [PubMed] [Google Scholar]
  2. Atkinson D., Smith H. M., Dickson J., Austin J. P. Interaction of apoprotein from porcine high-density lipoprotein with dimyristoyl lecithin. 1. The structure of the complexes. Eur J Biochem. 1976 May 1;64(2):541–547. doi: 10.1111/j.1432-1033.1976.tb10334.x. [DOI] [PubMed] [Google Scholar]
  3. Brouillette C. G., Jones J. L., Ng T. C., Kercret H., Chung B. H., Segrest J. P. Structural studies of apolipoprotein A-I/phosphatidylcholine recombinants by high-field proton NMR, nondenaturing gradient gel electrophoresis, and electron microscopy. Biochemistry. 1984 Jan 17;23(2):359–367. doi: 10.1021/bi00297a027. [DOI] [PubMed] [Google Scholar]
  4. Fielding C. J., Shore V. G., Fielding P. E. A protein cofactor of lecithin:cholesterol acyltransferase. Biochem Biophys Res Commun. 1972 Feb 25;46(4):1493–1498. doi: 10.1016/0006-291x(72)90776-0. [DOI] [PubMed] [Google Scholar]
  5. Forte T. M., Nichols A. V., Gong E. L., Levy R. I., Lux S. Electron microscopic study on reassembly of plasma high density apoprotein with various lipids. Biochim Biophys Acta. 1971 Nov 5;248(2):381–386. doi: 10.1016/0005-2760(71)90026-9. [DOI] [PubMed] [Google Scholar]
  6. Forte T., Norum K. R., Glomset J. A., Nichols A. V. Plasma lipoproteins in familial lecithin: cholesterol acyltransferase deficiency: structure of low and high density lipoproteins as revealed by elctron microscopy. J Clin Invest. 1971 May;50(5):1141–1148. doi: 10.1172/JCI106586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Groves J. T., Ulman N., Boxer S. G. Micropatterning fluid lipid bilayers on solid supports. Science. 1997 Jan 31;275(5300):651–653. doi: 10.1126/science.275.5300.651. [DOI] [PubMed] [Google Scholar]
  8. Groves J. T., Wülfing C., Boxer S. G. Electrical manipulation of glycan-phosphatidyl inositol-tethered proteins in planar supported bilayers. Biophys J. 1996 Nov;71(5):2716–2723. doi: 10.1016/S0006-3495(96)79462-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hamilton R. L., Williams M. C., Fielding C. J., Havel R. J. Discoidal bilayer structure of nascent high density lipoproteins from perfused rat liver. J Clin Invest. 1976 Sep;58(3):667–680. doi: 10.1172/JCI108513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jonas A., Kézdy K. E., Wald J. H. Defined apolipoprotein A-I conformations in reconstituted high density lipoprotein discs. J Biol Chem. 1989 Mar 25;264(9):4818–4824. [PubMed] [Google Scholar]
  11. Jonas A. Lecithin-cholesterol acyltransferase in the metabolism of high-density lipoproteins. Biochim Biophys Acta. 1991 Jul 30;1084(3):205–220. doi: 10.1016/0005-2760(91)90062-m. [DOI] [PubMed] [Google Scholar]
  12. Jonas A. Reconstitution of high-density lipoproteins. Methods Enzymol. 1986;128:553–582. doi: 10.1016/0076-6879(86)28092-1. [DOI] [PubMed] [Google Scholar]
  13. Jonas A., Wald J. H., Toohill K. L., Krul E. S., Kézdy K. E. Apolipoprotein A-I structure and lipid properties in homogeneous, reconstituted spherical and discoidal high density lipoproteins. J Biol Chem. 1990 Dec 25;265(36):22123–22129. [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Marra J., Israelachvili J. Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions. Biochemistry. 1985 Aug 13;24(17):4608–4618. doi: 10.1021/bi00338a020. [DOI] [PubMed] [Google Scholar]
  16. Matz C. E., Jonas A. Micellar complexes of human apolipoprotein A-I with phosphatidylcholines and cholesterol prepared from cholate-lipid dispersions. J Biol Chem. 1982 Apr 25;257(8):4535–4540. [PubMed] [Google Scholar]
  17. Morrisett J. D., Gallagher J. G., Aune K. C., Gotto A. M., Jr Structure of the major complex formed by interaction of phosphatidylcholine bilamellar vesicles and apolipoprotein-alanine (APO-C-III). Biochemistry. 1974 Nov 5;13(23):4765–4771. doi: 10.1021/bi00720a013. [DOI] [PubMed] [Google Scholar]
  18. Salafsky J., Groves J. T., Boxer S. G. Architecture and function of membrane proteins in planar supported bilayers: a study with photosynthetic reaction centers. Biochemistry. 1996 Nov 26;35(47):14773–14781. doi: 10.1021/bi961432i. [DOI] [PubMed] [Google Scholar]
  19. Segrest J. P. Amphipathic helixes and plasma lipoproteins: thermodynamic and geometric considerations. Chem Phys Lipids. 1977 Jan;18(1):7–22. doi: 10.1016/0009-3084(77)90023-8. [DOI] [PubMed] [Google Scholar]
  20. Segrest J. P., Jones M. K., De Loof H., Brouillette C. G., Venkatachalapathi Y. V., Anantharamaiah G. M. The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J Lipid Res. 1992 Feb;33(2):141–166. [PubMed] [Google Scholar]
  21. Tall A. R., Small D. M., Deckelbaum R. J., Shipley G. G. Structure and thermodynamic properties of high density lipoprotein recombinants. J Biol Chem. 1977 Jul 10;252(13):4701–4711. [PubMed] [Google Scholar]
  22. Wald J. H., Krul E. S., Jonas A. Structure of apolipoprotein A-I in three homogeneous, reconstituted high density lipoprotein particles. J Biol Chem. 1990 Nov 15;265(32):20037–20043. [PubMed] [Google Scholar]
  23. Wlodawer A., Segrest J. P., Chung B. H., Chiovetti R., Jr, Weinstein J. N. High-density lipoprotein recombinants: evidence for a bicycle tire micelle structure obtained by neutron scattering and electron microscopy. FEBS Lett. 1979 Aug 15;104(2):231–235. doi: 10.1016/0014-5793(79)80821-2. [DOI] [PubMed] [Google Scholar]
  24. Xu S., Arnsdorf M. F. Calibration of the scanning (atomic) force microscope with gold particles. J Microsc. 1994 Mar;173(Pt 3):199–210. doi: 10.1111/j.1365-2818.1994.tb03442.x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES