Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1997 Oct;73(4):1777–1784. doi: 10.1016/S0006-3495(97)78208-0

Proximity oscillations of complement type 4 (alphaX beta2) and urokinase receptors on migrating neutrophils.

A L Kindzelskii 1, M M Eszes 1, R F Todd 3rd 1, H R Petty 1
PMCID: PMC1181078  PMID: 9336173

Abstract

Migrating neutrophils utilize beta2 integrins for substrate attachment and urokinase receptors (uPAR) to focus pericellular proteolysis. Our studies show that CR3 associates with uPAR on resting cells, whereas uPAR associates with CR4 at lamellipodia of migrating cells. Using resonance energy transfer (RET) microscopy, we show that the molecular proximity between CR4 and uPAR oscillates on migrating cells, thus suggesting that CR4 molecules periodically bind/release uPAR. Cell contact with fibrinogen, endothelial cells, chemotactic factors and indomethacin, and treatment with sub-optimal doses of signal transduction inhibitors, affect the oscillations' period, amplitude, and/or waveform. The oscillations were indistinguishable in period and 180 degrees out-of-phase with cytosolic NAD(P)H autofluorescence oscillations. Thus, CR4 and CR3 identify a neutrophil's axis of migration and CR4 may restrain uPAR at lamellipodia. Oscillations in signal transduction and energy metabolism may coordinate cell adherence, local proteolysis, oxidant release, actin assembly, and cell extension.

Full text

PDF
1777

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett P. A., Dixon R. J., Kellie S. The phosphotyrosine phosphatase inhibitor vanadyl hydroperoxide induces morphological alterations, cytoskeletal rearrangements and increased adhesiveness in rat neutrophil leucocytes. J Cell Sci. 1993 Nov;106(Pt 3):891–901. doi: 10.1242/jcs.106.3.891. [DOI] [PubMed] [Google Scholar]
  2. Bohuslav J., Horejsí V., Hansmann C., Stöckl J., Weidle U. H., Majdic O., Bartke I., Knapp W., Stockinger H. Urokinase plasminogen activator receptor, beta 2-integrins, and Src-kinases within a single receptor complex of human monocytes. J Exp Med. 1995 Apr 1;181(4):1381–1390. doi: 10.1084/jem.181.4.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cao D., Mizukami I. F., Garni-Wagner B. A., Kindzelskii A. L., Todd R. F., 3rd, Boxer L. A., Petty H. R. Human urokinase-type plasminogen activator primes neutrophils for superoxide anion release. Possible roles of complement receptor type 3 and calcium. J Immunol. 1995 Feb 15;154(4):1817–1829. [PubMed] [Google Scholar]
  4. Chatila T. A., Geha R. S., Arnaout M. A. Constitutive and stimulus-induced phosphorylation of CD11/CD18 leukocyte adhesion molecules. J Cell Biol. 1989 Dec;109(6 Pt 2):3435–3444. doi: 10.1083/jcb.109.6.3435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ehrengruber M. U., Coates T. D., Deranleau D. A. Shape oscillations: a fundamental response of human neutrophils stimulated by chemotactic peptides? FEBS Lett. 1995 Feb 13;359(2-3):229–232. doi: 10.1016/0014-5793(95)00048-e. [DOI] [PubMed] [Google Scholar]
  6. Franke K., Gruler H. Galvanotaxis of human granulocytes: electric field jump studies. Eur Biophys J. 1990;18(6):335–346. doi: 10.1007/BF00196924. [DOI] [PubMed] [Google Scholar]
  7. Fällman M., Lew D. P., Stendahl O., Andersson T. Receptor-mediated phagocytosis in human neutrophils is associated with increased formation of inositol phosphates and diacylglycerol. Elevation in cytosolic free calcium and formation of inositol phosphates can be dissociated from accumulation of diacylglycerol. J Clin Invest. 1989 Sep;84(3):886–891. doi: 10.1172/JCI114249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Galon J., Gauchat J. F., Mazières N., Spagnoli R., Storkus W., Lötze M., Bonnefoy J. Y., Fridman W. H., Sautès C. Soluble Fcgamma receptor type III (FcgammaRIII, CD16) triggers cell activation through interaction with complement receptors. J Immunol. 1996 Aug 1;157(3):1184–1192. [PubMed] [Google Scholar]
  9. Gerisch G., Keller H. U. Chemotactic reorientation of granulocytes stimulated with micropipettes containing fMet-Leu-Phe. J Cell Sci. 1981 Dec;52:1–10. doi: 10.1242/jcs.52.1.1. [DOI] [PubMed] [Google Scholar]
  10. Hartman R. S., Lau K., Chou W., Coates T. D. The fundamental motor of the human neutrophil is not random: evidence for local non-Markov movement in neutrophils. Biophys J. 1994 Dec;67(6):2535–2545. doi: 10.1016/S0006-3495(94)80743-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hess B., Boiteux A. Oscillatory phenomena in biochemistry. Annu Rev Biochem. 1971;40:237–258. doi: 10.1146/annurev.bi.40.070171.001321. [DOI] [PubMed] [Google Scholar]
  12. Hunter T. A thousand and one protein kinases. Cell. 1987 Sep 11;50(6):823–829. doi: 10.1016/0092-8674(87)90509-5. [DOI] [PubMed] [Google Scholar]
  13. Jäger U., Gruler H., Bültmann B. Morphological changes and membrane potential of human granulocytes under influence of chemotactic peptide and/or echo-virus, type 9. Klin Wochenschr. 1988 May 16;66(10):434–436. doi: 10.1007/BF01745512. [DOI] [PubMed] [Google Scholar]
  14. Kay N. E., Bumol T. F., Douglas S. D. Effects of 2-deoxy-D-glucose on human monocyte metabolism and function. J Reticuloendothel Soc. 1980 Oct;28(4):367–379. [PubMed] [Google Scholar]
  15. Kindzelskii A. L., Laska Z. O., Todd R. F., 3rd, Petty H. R. Urokinase-type plasminogen activator receptor reversibly dissociates from complement receptor type 3 (alpha M beta 2' CD11b/CD18) during neutrophil polarization. J Immunol. 1996 Jan 1;156(1):297–309. [PubMed] [Google Scholar]
  16. Krauss J. C., PooH, Xue W., Mayo-Bond L., Todd R. F., 3rd, Petty H. R. Reconstitution of antibody-dependent phagocytosis in fibroblasts expressing Fc gamma receptor IIIB and the complement receptor type 3. J Immunol. 1994 Aug 15;153(4):1769–1777. [PubMed] [Google Scholar]
  17. Kruskal B. A., Maxfield F. R. Cytosolic free calcium increases before and oscillates during frustrated phagocytosis in macrophages. J Cell Biol. 1987 Dec;105(6 Pt 1):2685–2693. doi: 10.1083/jcb.105.6.2685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Larsson O., Kindmark H., Brandstrom R., Fredholm B., Berggren P. O. Oscillations in KATP channel activity promote oscillations in cytoplasmic free Ca2+ concentration in the pancreatic beta cell. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5161–5165. doi: 10.1073/pnas.93.10.5161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lazar J. G., Ross J. Changes in mean concentration, phase shifts, and dissipation in a forced oscillatory reaction. Science. 1990 Jan 12;247(4939):189–192. doi: 10.1126/science.2294601. [DOI] [PubMed] [Google Scholar]
  20. Liang B., Petty H. R. Imaging neutrophil activation: analysis of the translocation and utilization of NAD(P)H-associated autofluorescence during antibody-dependent target oxidation. J Cell Physiol. 1992 Jul;152(1):145–156. doi: 10.1002/jcp.1041520119. [DOI] [PubMed] [Google Scholar]
  21. Marks P. W., Maxfield F. R. Transient increases in cytosolic free calcium appear to be required for the migration of adherent human neutrophils. J Cell Biol. 1990 Jan;110(1):43–52. doi: 10.1083/jcb.110.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mizushima Y., Akaoka I., Nishida Y. Effects of magnetic field on inflammation. Experientia. 1975 Dec 15;31(12):1411–1412. doi: 10.1007/BF01923216. [DOI] [PubMed] [Google Scholar]
  23. O'Rourke B., Ramza B. M., Marban E. Oscillations of membrane current and excitability driven by metabolic oscillations in heart cells. Science. 1994 Aug 12;265(5174):962–966. doi: 10.1126/science.8052856. [DOI] [PubMed] [Google Scholar]
  24. Omann G. M., Porasik M. M., Sklar L. A. Oscillating actin polymerization/depolymerization responses in human polymorphonuclear leukocytes. J Biol Chem. 1989 Oct 5;264(28):16355–16358. [PubMed] [Google Scholar]
  25. Omann G. M., Rengan R., Hoffman J. F., Linderman J. J. Rapid oscillations of actin polymerization/depolymerization in polymorphonuclear leukocytes stimulated by leukotriene B4 and platelet-activating factor. J Immunol. 1995 Dec 1;155(11):5375–5381. [PubMed] [Google Scholar]
  26. Patriarca P., Cramer R., Moncalvo S., Rossi F., Romeo D. Enzymatic basis of metabolic stimulation in leucocytes during phagocytosis: the role of activated NADPH oxidase. Arch Biochem Biophys. 1971 Jul;145(1):255–262. doi: 10.1016/0003-9861(71)90034-8. [DOI] [PubMed] [Google Scholar]
  27. Peter K., O'Toole T. E. Modulation of cell adhesion by changes in alpha L beta 2 (LFA-1, CD11a/CD18) cytoplasmic domain/cytoskeleton interaction. J Exp Med. 1995 Jan 1;181(1):315–326. doi: 10.1084/jem.181.1.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Petty H. R., Todd R. F., 3rd Integrins as promiscuous signal transduction devices. Immunol Today. 1996 May;17(5):209–212. doi: 10.1016/0167-5699(96)30013-3. [DOI] [PubMed] [Google Scholar]
  29. Poo H., Krauss J. C., Mayo-Bond L., Todd R. F., 3rd, Petty H. R. Interaction of Fc gamma receptor type IIIB with complement receptor type 3 in fibroblast transfectants: evidence from lateral diffusion and resonance energy transfer studies. J Mol Biol. 1995 Apr 7;247(4):597–603. doi: 10.1006/jmbi.1995.0166. [DOI] [PubMed] [Google Scholar]
  30. Richter P. H., Ross J. Concentration oscillations and efficiency: glycolysis. Science. 1981 Feb 13;211(4483):715–717. doi: 10.1126/science.6450447. [DOI] [PubMed] [Google Scholar]
  31. Roubey R. A., Ross G. D., Merrill J. T., Walton F., Reed W., Winchester R. J., Buyon J. P. Staurosporine inhibits neutrophil phagocytosis but not iC3b binding mediated by CR3 (CD11b/CD18). J Immunol. 1991 May 15;146(10):3557–3562. [PubMed] [Google Scholar]
  32. Sehgal G., Zhang K., Todd R. F., 3rd, Boxer L. A., Petty H. R. Lectin-like inhibition of immune complex receptor-mediated stimulation of neutrophils. Effects on cytosolic calcium release and superoxide production. J Immunol. 1993 May 15;150(10):4571–4580. [PubMed] [Google Scholar]
  33. Sitrin R. G., Todd R. F., 3rd, Albrecht E., Gyetko M. R. The urokinase receptor (CD87) facilitates CD11b/CD18-mediated adhesion of human monocytes. J Clin Invest. 1996 Apr 15;97(8):1942–1951. doi: 10.1172/JCI118626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Smolen J. E., Weissmann G. Effects of indomethacin, 5,8,11,14-eicosatetraynoic acid, and p-bromophenacyl bromide on lysosomal enzyme release and superoxide anion generation by human polymorphonuclear leukocytes. Biochem Pharmacol. 1980 Feb 15;29(4):533–538. doi: 10.1016/0006-2952(80)90373-1. [DOI] [PubMed] [Google Scholar]
  35. Smolen P., Keizer J. Slow voltage inactivation of Ca2+ currents and bursting mechanisms for the mouse pancreatic beta-cell. J Membr Biol. 1992 Apr;127(1):9–19. doi: 10.1007/BF00232754. [DOI] [PubMed] [Google Scholar]
  36. Spisani S., Vanzini G., Traniello S. Inhibition of human leucocytes locomotion by anti-inflammatory drugs. Experientia. 1979 Jun 15;35(6):803–804. doi: 10.1007/BF01968260. [DOI] [PubMed] [Google Scholar]
  37. Springer T. A. The sensation and regulation of interactions with the extracellular environment: the cell biology of lymphocyte adhesion receptors. Annu Rev Cell Biol. 1990;6:359–402. doi: 10.1146/annurev.cb.06.110190.002043. [DOI] [PubMed] [Google Scholar]
  38. Stossel T. P. On the crawling of animal cells. Science. 1993 May 21;260(5111):1086–1094. doi: 10.1126/science.8493552. [DOI] [PubMed] [Google Scholar]
  39. Stöckl J., Majdic O., Pickl W. F., Rosenkranz A., Prager E., Gschwantler E., Knapp W. Granulocyte activation via a binding site near the C-terminal region of complement receptor type 3 alpha-chain (CD11b) potentially involved in intramembrane complex formation with glycosylphosphatidylinositol-anchored Fc gamma RIIIB (CD16) molecules. J Immunol. 1995 May 15;154(10):5452–5463. [PubMed] [Google Scholar]
  40. Uster P. S., Pagano R. E. Resonance energy transfer microscopy: observations of membrane-bound fluorescent probes in model membranes and in living cells. J Cell Biol. 1986 Oct;103(4):1221–1234. doi: 10.1083/jcb.103.4.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Vicker M. G. The regulation of chemotaxis and chemokinesis in Dictyostelium amoebae by temporal signals and spatial gradients of cyclic AMP. J Cell Sci. 1994 Feb;107(Pt 2):659–667. doi: 10.1242/jcs.107.2.659. [DOI] [PubMed] [Google Scholar]
  42. Wang N., Butler J. P., Ingber D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993 May 21;260(5111):1124–1127. doi: 10.1126/science.7684161. [DOI] [PubMed] [Google Scholar]
  43. Weiss S. J. Tissue destruction by neutrophils. N Engl J Med. 1989 Feb 9;320(6):365–376. doi: 10.1056/NEJM198902093200606. [DOI] [PubMed] [Google Scholar]
  44. Wymann M. P., Kernen P., Bengtsson T., Andersson T., Baggiolini M., Deranleau D. A. Corresponding oscillations in neutrophil shape and filamentous actin content. J Biol Chem. 1990 Jan 15;265(2):619–622. [PubMed] [Google Scholar]
  45. Wymann M. P., Kernen P., Deranleau D. A., Baggiolini M. Respiratory burst oscillations in human neutrophils and their correlation with fluctuations in apparent cell shape. J Biol Chem. 1989 Sep 25;264(27):15829–15834. [PubMed] [Google Scholar]
  46. Xue W., Kindzelskii A. L., Todd R. F., 3rd, Petty H. R. Physical association of complement receptor type 3 and urokinase-type plasminogen activator receptor in neutrophil membranes. J Immunol. 1994 May 1;152(9):4630–4640. [PubMed] [Google Scholar]
  47. Xue W., Mizukami I., Todd R. F., 3rd, Petty H. R. Urokinase-type plasminogen activator receptors associate with beta1 and beta3 integrins of fibrosarcoma cells: dependence on extracellular matrix components. Cancer Res. 1997 May 1;57(9):1682–1689. [PubMed] [Google Scholar]
  48. Zarewych D. M., Kindzelskii A. L., Todd R. F., 3rd, Petty H. R. LPS induces CD14 association with complement receptor type 3, which is reversed by neutrophil adhesion. J Immunol. 1996 Jan 15;156(2):430–433. [PubMed] [Google Scholar]
  49. Zhou M. J., Brown E. J. CR3 (Mac-1, alpha M beta 2, CD11b/CD18) and Fc gamma RIII cooperate in generation of a neutrophil respiratory burst: requirement for Fc gamma RIII and tyrosine phosphorylation. J Cell Biol. 1994 Jun;125(6):1407–1416. doi: 10.1083/jcb.125.6.1407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zhou M., Todd R. F., 3rd, van de Winkel J. G., Petty H. R. Cocapping of the leukoadhesin molecules complement receptor type 3 and lymphocyte function-associated antigen-1 with Fc gamma receptor III on human neutrophils. Possible role of lectin-like interactions. J Immunol. 1993 Apr 1;150(7):3030–3041. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES