Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1997 Oct;73(4):2116–2125. doi: 10.1016/S0006-3495(97)78242-0

Involvement of water molecules in the association of monoclonal antibody HyHEL-5 with bobwhite quail lysozyme.

K A Xavier 1, K A Shick 1, S J Smith-Gil 1, R C Willson 1
PMCID: PMC1181112  PMID: 9336207

Abstract

Fluorescence polarization spectroscopy and isothermal titration calorimetry were used to study the influence of osmolytes on the association of the anti-hen egg lysozyme (HEL) monoclonal antibody HyHEL-5 with bobwhite quail lysozyme (BWQL). BWQL is an avian species variant with an Arg-->Lys mutation in the HyHEL-5 epitope, as well as three other mutations outside the HyHEL-5 structural epitope. This mutation decreases the equilibrium association constant of HyHEL-5 for BWQL by over 1000-fold as compared to HEL. The three-dimensional structure of this complex has been obtained recently. Fluorescein-labeled BWQL, obtained by labeling at pH 7.5 and purified by hydrophobic interaction chromatograpy, bound HyHEL-5 with an equilibrium association constant close to that determined for unlabeled BWQL by isothermal titration calorimetry. Fluorescence titration, stopped-flow kinetics, and isothermal titration calorimetry experiments using various concentrations of the osmolytes glycerol, ethylene glycol, and betaine to perturb binding gave a lower limit of the uptake of approximately 6-12 water molecules upon formation of the HyHEL-5/BWQL complex.

Full text

PDF
2116

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arakawa T., Timasheff S. N. Stabilization of protein structure by sugars. Biochemistry. 1982 Dec 7;21(25):6536–6544. doi: 10.1021/bi00268a033. [DOI] [PubMed] [Google Scholar]
  2. Arnheim N., Prager E. M., Wilson A. C. Immunological prediction of sequence differences among proteins. Chemical comparison of chicken, quail, and phesant lysozymes. J Biol Chem. 1969 Apr 25;244(8):2085–2094. [PubMed] [Google Scholar]
  3. Bhat T. N., Bentley G. A., Boulot G., Greene M. I., Tello D., Dall'Acqua W., Souchon H., Schwarz F. P., Mariuzza R. A., Poljak R. J. Bound water molecules and conformational stabilization help mediate an antigen-antibody association. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1089–1093. doi: 10.1073/pnas.91.3.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Braden B. C., Fields B. A., Poljak R. J. Conservation of water molecules in an antibody-antigen interaction. J Mol Recognit. 1995 Sep-Oct;8(5):317–325. doi: 10.1002/jmr.300080505. [DOI] [PubMed] [Google Scholar]
  5. Chacko S., Silverton E. W., Smith-Gill S. J., Davies D. R., Shick K. A., Xavier K. A., Willson R. C., Jeffrey P. D., Chang C. Y., Sieker L. C. Refined structures of bobwhite quail lysozyme uncomplexed and complexed with the HyHEL-5 Fab fragment. Proteins. 1996 Sep;26(1):55–65. doi: 10.1002/(SICI)1097-0134(199609)26:1<55::AID-PROT5>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  6. Chacko S., Silverton E., Kam-Morgan L., Smith-Gill S., Cohen G., Davies D. Structure of an antibody-lysozyme complex unexpected effect of conservative mutation. J Mol Biol. 1995 Jan 20;245(3):261–274. doi: 10.1006/jmbi.1994.0022. [DOI] [PubMed] [Google Scholar]
  7. Cohen G. H., Sheriff S., Davies D. R. Refined structure of the monoclonal antibody HyHEL-5 with its antigen hen egg-white lysozyme. Acta Crystallogr D Biol Crystallogr. 1996 Mar 1;52(Pt 2):315–326. doi: 10.1107/S0907444995014855. [DOI] [PubMed] [Google Scholar]
  8. Colombo M. F., Rau D. C., Parsegian V. A. Protein solvation in allosteric regulation: a water effect on hemoglobin. Science. 1992 May 1;256(5057):655–659. doi: 10.1126/science.1585178. [DOI] [PubMed] [Google Scholar]
  9. Colombo M. F., Rau D. C., Parsegian V. A. Reevaluation of chloride's regulation of hemoglobin oxygen uptake: the neglected contribution of protein hydration in allosterism. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10517–10520. doi: 10.1073/pnas.91.22.10517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Connelly P. R., Aldape R. A., Bruzzese F. J., Chambers S. P., Fitzgibbon M. J., Fleming M. A., Itoh S., Livingston D. J., Navia M. A., Thomson J. A. Enthalpy of hydrogen bond formation in a protein-ligand binding reaction. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1964–1968. doi: 10.1073/pnas.91.5.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Davies D. R., Cohen G. H. Interactions of protein antigens with antibodies. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):7–12. doi: 10.1073/pnas.93.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dunitz J. D. The entropic cost of bound water in crystals and biomolecules. Science. 1994 Apr 29;264(5159):670–670. doi: 10.1126/science.264.5159.670. [DOI] [PubMed] [Google Scholar]
  13. Dunitz J. D. Win some, lose some: enthalpy-entropy compensation in weak intermolecular interactions. Chem Biol. 1995 Nov;2(11):709–712. doi: 10.1016/1074-5521(95)90097-7. [DOI] [PubMed] [Google Scholar]
  14. Dzingeleski G. D., Wolfenden R. Hypersensitivity of an enzyme reaction to solvent water. Biochemistry. 1993 Sep 7;32(35):9143–9147. doi: 10.1021/bi00086a020. [DOI] [PubMed] [Google Scholar]
  15. Fersht A. R., Shi J. P., Knill-Jones J., Lowe D. M., Wilkinson A. J., Blow D. M., Brick P., Carter P., Waye M. M., Winter G. Hydrogen bonding and biological specificity analysed by protein engineering. Nature. 1985 Mar 21;314(6008):235–238. doi: 10.1038/314235a0. [DOI] [PubMed] [Google Scholar]
  16. Fields B. A., Goldbaum F. A., Dall'Acqua W., Malchiodi E. L., Cauerhff A., Schwarz F. P., Ysern X., Poljak R. J., Mariuzza R. A. Hydrogen bonding and solvent structure in an antigen-antibody interface. Crystal structures and thermodynamic characterization of three Fv mutants complexed with lysozyme. Biochemistry. 1996 Dec 3;35(48):15494–15503. doi: 10.1021/bi961709e. [DOI] [PubMed] [Google Scholar]
  17. Foote J., Winter G. Antibody framework residues affecting the conformation of the hypervariable loops. J Mol Biol. 1992 Mar 20;224(2):487–499. doi: 10.1016/0022-2836(92)91010-m. [DOI] [PubMed] [Google Scholar]
  18. Gabler D., Mandal C., Harrington C., Adamczyk M., Linthicum D. S. Kinetic and energetic parameters of imipramine binding to monoclonal antibodies as measured by fluorescence spectroscopy. Hybridoma. 1992 Jun;11(3):301–310. doi: 10.1089/hyb.1992.11.301. [DOI] [PubMed] [Google Scholar]
  19. Gekko K., Timasheff S. N. Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry. 1981 Aug 4;20(16):4667–4676. doi: 10.1021/bi00519a023. [DOI] [PubMed] [Google Scholar]
  20. Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
  21. Goldbaum F. A., Schwarz F. P., Eisenstein E., Cauerhff A., Mariuzza R. A., Poljak R. J. The effect of water activity on the association constant and the enthalpy of reaction between lysozyme and the specific antibodies D1.3 and D44.1. J Mol Recognit. 1996 Jan-Feb;9(1):6–12. doi: 10.1002/(SICI)1099-1352(199601)9:1%3C6::AID-JMR240%3E3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  22. Herron J. N., Kranz D. M., Jameson D. M., Voss E. W., Jr Thermodynamic properties of ligand binding by monoclonal anti-fluorescyl antibodies. Biochemistry. 1986 Aug 12;25(16):4602–4609. doi: 10.1021/bi00364a022. [DOI] [PubMed] [Google Scholar]
  23. Herron J. N., Terry A. H., Johnston S., He X. M., Guddat L. W., Voss E. W., Jr, Edmundson A. B. High resolution structures of the 4-4-20 Fab-fluorescein complex in two solvent systems: effects of solvent on structure and antigen-binding affinity. Biophys J. 1994 Dec;67(6):2167–2183. doi: 10.1016/S0006-3495(94)80738-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hibbits K. A., Gill D. S., Willson R. C. Isothermal titration calorimetric study of the association of hen egg lysozyme and the anti-lysozyme antibody HyHEL-5. Biochemistry. 1994 Mar 29;33(12):3584–3590. doi: 10.1021/bi00178a015. [DOI] [PubMed] [Google Scholar]
  25. Huang P., Dong A., Caughey W. S. Effects of dimethyl sulfoxide, glycerol, and ethylene glycol on secondary structures of cytochrome c and lysozyme as observed by infrared spectroscopy. J Pharm Sci. 1995 Apr;84(4):387–392. doi: 10.1002/jps.2600840402. [DOI] [PubMed] [Google Scholar]
  26. Jelesarov I., Bosshard H. R. Thermodynamics of ferredoxin binding to ferredoxin:NADP+ reductase and the role of water at the complex interface. Biochemistry. 1994 Nov 15;33(45):13321–13328. doi: 10.1021/bi00249a019. [DOI] [PubMed] [Google Scholar]
  27. Kornblatt J. A., Hoa G. H. A nontraditional role for water in the cytochrome c oxidase reaction. Biochemistry. 1990 Oct 9;29(40):9370–9376. doi: 10.1021/bi00492a010. [DOI] [PubMed] [Google Scholar]
  28. Kornblatt J. A., Kornblatt M. J., Hoa G. H., Mauk A. G. Responses of two protein-protein complexes to solvent stress: does water play a role at the interface? Biophys J. 1993 Sep;65(3):1059–1065. doi: 10.1016/S0006-3495(93)81168-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lumry R., Rajender S. Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous property of water. Biopolymers. 1970;9(10):1125–1227. doi: 10.1002/bip.1970.360091002. [DOI] [PubMed] [Google Scholar]
  30. Murphy K. P., Freire E., Paterson Y. Configurational effects in antibody-antigen interactions studied by microcalorimetry. Proteins. 1995 Feb;21(2):83–90. doi: 10.1002/prot.340210202. [DOI] [PubMed] [Google Scholar]
  31. Murphy K. P., Xie D., Garcia K. C., Amzel L. M., Freire E. Structural energetics of peptide recognition: angiotensin II/antibody binding. Proteins. 1993 Feb;15(2):113–120. doi: 10.1002/prot.340150203. [DOI] [PubMed] [Google Scholar]
  32. Parsegian V. A., Rand R. P., Fuller N. L., Rau D. C. Osmotic stress for the direct measurement of intermolecular forces. Methods Enzymol. 1986;127:400–416. doi: 10.1016/0076-6879(86)27032-9. [DOI] [PubMed] [Google Scholar]
  33. Parsegian V. A., Rand R. P., Rau D. C. Macromolecules and water: probing with osmotic stress. Methods Enzymol. 1995;259:43–94. doi: 10.1016/0076-6879(95)59039-0. [DOI] [PubMed] [Google Scholar]
  34. Raman C. S., Allen M. J., Nall B. T. Enthalpy of antibody--cytochrome c binding. Biochemistry. 1995 May 2;34(17):5831–5838. doi: 10.1021/bi00017a015. [DOI] [PubMed] [Google Scholar]
  35. Rand R. P., Fuller N. L., Butko P., Francis G., Nicholls P. Measured change in protein solvation with substrate binding and turnover. Biochemistry. 1993 Jun 15;32(23):5925–5929. doi: 10.1021/bi00074a001. [DOI] [PubMed] [Google Scholar]
  36. Robinson C. R., Sligar S. G. Heterogeneity in molecular recognition by restriction endonucleases: osmotic and hydrostatic pressure effects on BamHI, Pvu II, and EcoRV specificity. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3444–3448. doi: 10.1073/pnas.92.8.3444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Robinson C. R., Sligar S. G. Hydrostatic pressure reverses osmotic pressure effects on the specificity of EcoRI-DNA interactions. Biochemistry. 1994 Apr 5;33(13):3787–3793. doi: 10.1021/bi00179a001. [DOI] [PubMed] [Google Scholar]
  38. Robinson C. R., Sligar S. G. Molecular recognition mediated by bound water. A mechanism for star activity of the restriction endonuclease EcoRI. J Mol Biol. 1993 Nov 20;234(2):302–306. doi: 10.1006/jmbi.1993.1586. [DOI] [PubMed] [Google Scholar]
  39. Rodgers K. K., Pochapsky T. C., Sligar S. G. Probing the mechanisms of macromolecular recognition: the cytochrome b5-cytochrome c complex. Science. 1988 Jun 17;240(4859):1657–1659. doi: 10.1126/science.2837825. [DOI] [PubMed] [Google Scholar]
  40. Schwarz F. P., Tello D., Goldbaum F. A., Mariuzza R. A., Poljak R. J. Thermodynamics of antigen-antibody binding using specific anti-lysozyme antibodies. Eur J Biochem. 1995 Mar 1;228(2):388–394. [PubMed] [Google Scholar]
  41. Sheriff S., Silverton E. W., Padlan E. A., Cohen G. H., Smith-Gill S. J., Finzel B. C., Davies D. R. Three-dimensional structure of an antibody-antigen complex. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8075–8079. doi: 10.1073/pnas.84.22.8075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sidorova NYu, Rau D. C. The osmotic sensitivity of netropsin analogue binding to DNA. Biopolymers. 1995 Apr;35(4):377–384. doi: 10.1002/bip.360350405. [DOI] [PubMed] [Google Scholar]
  43. Sigurskjold B. W., Altman E., Bundle D. R. Sensitive titration microcalorimetric study of the binding of Salmonella O-antigenic oligosaccharides by a monoclonal antibody. Eur J Biochem. 1991 Apr 10;197(1):239–246. doi: 10.1111/j.1432-1033.1991.tb15904.x. [DOI] [PubMed] [Google Scholar]
  44. Sigurskjold B. W., Bundle D. R. Thermodynamics of oligosaccharide binding to a monoclonal antibody specific for a Salmonella O-antigen point to hydrophobic interactions in the binding site. J Biol Chem. 1992 Apr 25;267(12):8371–8376. [PubMed] [Google Scholar]
  45. Smith-Gill S. J., Lavoie T. B., Mainhart C. R. Antigenic regions defined by monoclonal antibodies correspond to structural domains of avian lysozyme. J Immunol. 1984 Jul;133(1):384–393. [PubMed] [Google Scholar]
  46. Smith-Gill S. J., Mainhart C. R., Lavoie T. B., Rudikoff S., Potter M. VL-VH expression by monoclonal antibodies recognizing avian lysozyme. J Immunol. 1984 Feb;132(2):963–967. [PubMed] [Google Scholar]
  47. Smith-Gill S. J., Wilson A. C., Potter M., Prager E. M., Feldmann R. J., Mainhart C. R. Mapping the antigenic epitope for a monoclonal antibody against lysozyme. J Immunol. 1982 Jan;128(1):314–322. [PubMed] [Google Scholar]
  48. Spolar R. S., Record M. T., Jr Coupling of local folding to site-specific binding of proteins to DNA. Science. 1994 Feb 11;263(5148):777–784. doi: 10.1126/science.8303294. [DOI] [PubMed] [Google Scholar]
  49. Stinson R. A., Holbrook J. J. Equilibrium binding of nicotinamide nucleotides to lactate dehydrogenases. Biochem J. 1973 Apr;131(4):719–728. doi: 10.1042/bj1310719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. TANFORD C., BUCKLEY C. E., 3rd, DE P. K., LIVELY E. P. Effect of ethylene glycol on the conformation of gama-globulin and beta-lactoglobulin. J Biol Chem. 1962 Apr;237:1168–1171. [PubMed] [Google Scholar]
  51. Tello D., Eisenstein E., Schwarz F. P., Goldbaum F. A., Fields B. A., Mariuzza R. A., Poljak R. J. Structural and physicochemical analysis of the reaction between the anti-lysozyme antibody D1.3 and the anti-idiotopic antibodies E225 and E5.2. J Mol Recognit. 1994 Mar;7(1):57–62. doi: 10.1002/jmr.300070108. [DOI] [PubMed] [Google Scholar]
  52. Tello D., Goldbaum F. A., Mariuzza R. A., Ysern X., Schwarz F. P., Poljak R. J. Three-dimensional structure and thermodynamics of antigen binding by anti-lysozyme antibodies. Biochem Soc Trans. 1993 Nov;21(4):943–946. doi: 10.1042/bst0210943. [DOI] [PubMed] [Google Scholar]
  53. Tsumoto K., Nakaoki Y., Ueda Y., Ogasahara K., Yutani K., Watanabe K., Kumagai I. Effect of the order of antibody variable regions on the expression of the single-chain HyHEL10 Fv fragment in E. coli and the thermodynamic analysis of its antigen-binding properties. Biochem Biophys Res Commun. 1994 Jun 15;201(2):546–551. doi: 10.1006/bbrc.1994.1736. [DOI] [PubMed] [Google Scholar]
  54. Tsumoto K., Ogasahara K., Ueda Y., Watanabe K., Yutani K., Kumagai I. Role of Tyr residues in the contact region of anti-lysozyme monoclonal antibody HyHEL10 for antigen binding. J Biol Chem. 1995 Aug 4;270(31):18551–18557. doi: 10.1074/jbc.270.31.18551. [DOI] [PubMed] [Google Scholar]
  55. Tsumoto K., Ueda Y., Maenaka K., Watanabe K., Ogasahara K., Yutani K., Kumagai I. Contribution to antibody-antigen interaction of structurally perturbed antigenic residues upon antibody binding. J Biol Chem. 1994 Nov 18;269(46):28777–28782. [PubMed] [Google Scholar]
  56. Wei A. P., Herron J. N. Use of synthetic peptides as tracer antigens in fluorescence polarization immunoassays of high molecular weight analytes. Anal Chem. 1993 Dec 1;65(23):3372–3377. doi: 10.1021/ac00071a007. [DOI] [PubMed] [Google Scholar]
  57. Wiseman T., Williston S., Brandts J. F., Lin L. N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem. 1989 May 15;179(1):131–137. doi: 10.1016/0003-2697(89)90213-3. [DOI] [PubMed] [Google Scholar]
  58. Ysern X., Fields B. A., Bhat T. N., Goldbaum F. A., Dall'Acqua W., Schwarz F. P., Poljak R. J., Mariuzza R. A. Solvent rearrangement in an antigen-antibody interface introduced by site-directed mutagenesis of the antibody combining site. J Mol Biol. 1994 May 13;238(4):496–500. doi: 10.1006/jmbi.1994.1309. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES