Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1997 Nov;73(5):2674–2687. doi: 10.1016/S0006-3495(97)78296-1

Salt effects on the structure and internal dynamics of superhelical DNAs studied by light scattering and Brownian dynamics.

M Hammermann 1, C Steinmaier 1, H Merlitz 1, U Kapp 1, W Waldeck 1, G Chirico 1, J Langowski 1
PMCID: PMC1181169  PMID: 9370461

Abstract

Using laser light scattering, we have measured the static and dynamic structure factor of two different superhelical DNAs, p1868 (1868 bp) and simian virus 40 (SV40) (5243 bp), in dilute aqueous solution at salt concentrations between 1 mM and 3 M NaCl. For both DNA molecules, Brownian dynamics (BD) simulations were also performed, using a previously described model. A Fourier mode decomposition procedure was used to compute theoretical light scattering autocorrelation functions (ACFs) from the BD trajectories. Both measured and computed autocorrelation functions were then subjected to the same multiexponential decomposition procedure. Simulated and measured relaxation times as a function of scattering angle were in very good agreement. Similarly, computed and measured static structure factors and radii of gyration agreed within experimental error. One main result of this study is that the amplitudes of the fast-relaxing component in the ACF show a peak at 1 M salt concentration. This nonmonotonic behavior might be caused by an initial increase in the amplitudes of internal motions due to diminishing long-range electrostatic repulsions, followed by a decrease at higher salt concentration due to a compaction of the structure.

Full text

PDF
2674

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson P., Bauer W. Supercoiling in closed circular DNA: dependence upon ion type and concentration. Biochemistry. 1978 Feb 21;17(4):594–601. doi: 10.1021/bi00597a006. [DOI] [PubMed] [Google Scholar]
  2. Baase W. A., Johnson W. C., Jr Circular dichroism and DNA secondary structure. Nucleic Acids Res. 1979 Feb;6(2):797–814. doi: 10.1093/nar/6.2.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bednar J., Furrer P., Stasiak A., Dubochet J., Egelman E. H., Bates A. D. The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix. Possible implications for DNA structure in vivo. J Mol Biol. 1994 Jan 21;235(3):825–847. doi: 10.1006/jmbi.1994.1042. [DOI] [PubMed] [Google Scholar]
  4. Boles T. C., White J. H., Cozzarelli N. R. Structure of plectonemically supercoiled DNA. J Mol Biol. 1990 Jun 20;213(4):931–951. doi: 10.1016/S0022-2836(05)80272-4. [DOI] [PubMed] [Google Scholar]
  5. Borowiec J. A., Zhang L., Sasse-Dwight S., Gralla J. D. DNA supercoiling promotes formation of a bent repression loop in lac DNA. J Mol Biol. 1987 Jul 5;196(1):101–111. doi: 10.1016/0022-2836(87)90513-4. [DOI] [PubMed] [Google Scholar]
  6. Chirico G., Langowski J. Brownian dynamics simulations of supercoiled DNA with bent sequences. Biophys J. 1996 Aug;71(2):955–971. doi: 10.1016/S0006-3495(96)79299-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gebe J. A., Delrow J. J., Heath P. J., Fujimoto B. S., Stewart D. W., Schurr J. M. Effects of Na+ and Mg2+ on the structures of supercoiled DNAs: comparison of simulations with experiments. J Mol Biol. 1996 Sep 20;262(2):105–128. doi: 10.1006/jmbi.1996.0502. [DOI] [PubMed] [Google Scholar]
  8. Hagerman P. J. Flexibility of DNA. Annu Rev Biophys Biophys Chem. 1988;17:265–286. doi: 10.1146/annurev.bb.17.060188.001405. [DOI] [PubMed] [Google Scholar]
  9. Kapp U., Langowski J. Preparation of DNA topoisomers by RP-18 high-performance liquid chromatography. Anal Biochem. 1992 Nov 1;206(2):293–299. doi: 10.1016/0003-2697(92)90369-i. [DOI] [PubMed] [Google Scholar]
  10. Klenin K. V., Frank-Kamenetskii M. D., Langowski J. Modulation of intramolecular interactions in superhelical DNA by curved sequences: a Monte Carlo simulation study. Biophys J. 1995 Jan;68(1):81–88. doi: 10.1016/S0006-3495(95)80161-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kremer W., Klenin K., Diekmann S., Langowski J. DNA curvature influences the internal motions of supercoiled DNA. EMBO J. 1993 Nov;12(11):4407–4412. doi: 10.1002/j.1460-2075.1993.tb06125.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Langowski J., Giesen U. Configurational and dynamic properties of different length superhelical DNAs measured by dynamic light scattering. Biophys Chem. 1989 Sep 15;34(1):9–18. doi: 10.1016/0301-4622(89)80036-5. [DOI] [PubMed] [Google Scholar]
  13. Langowski J., Giesen U., Lehmann C. Dynamics of superhelical DNA studied by photon correlation spectroscopy. Biophys Chem. 1986 Dec 15;25(2):191–200. doi: 10.1016/0301-4622(86)87010-7. [DOI] [PubMed] [Google Scholar]
  14. Langowski J., Olson W. K., Pedersen S. C., Tobias I., Westcott T. P., Yang Y. DNA supercoiling, localized bending and thermal fluctuations. Trends Biochem Sci. 1996 Feb;21(2):50–50. [PubMed] [Google Scholar]
  15. Langowski J. Salt effects on internal motions of superhelical and linear pUC8 DNA. Dynamic light scattering studies. Biophys Chem. 1987 Sep;27(3):263–271. doi: 10.1016/0301-4622(87)80066-2. [DOI] [PubMed] [Google Scholar]
  16. Laundon C. H., Griffith J. D. Curved helix segments can uniquely orient the topology of supertwisted DNA. Cell. 1988 Feb 26;52(4):545–549. doi: 10.1016/0092-8674(88)90467-9. [DOI] [PubMed] [Google Scholar]
  17. Stigter D. Interactions of highly charged colloidal cylinders with applications to double-stranded. Biopolymers. 1977 Jul;16(7):1435–1448. doi: 10.1002/bip.1977.360160705. [DOI] [PubMed] [Google Scholar]
  18. Vologodskii A. V., Levene S. D., Klenin K. V., Frank-Kamenetskii M., Cozzarelli N. R. Conformational and thermodynamic properties of supercoiled DNA. J Mol Biol. 1992 Oct 20;227(4):1224–1243. doi: 10.1016/0022-2836(92)90533-p. [DOI] [PubMed] [Google Scholar]
  19. Waldeck W., Zentgraf H., Rösl F. Topoisomerase II inhibitors influence simian virus 40 chromatin structure in vivo accompanied with inhibition of replication, transcription and changes in DNA supercoiling. Oncology. 1988;45(2):107–116. doi: 10.1159/000226543. [DOI] [PubMed] [Google Scholar]
  20. Zhang P., Tobias I., Olson W. K. Computer simulation of protein-induced structural changes in closed circular DNA. J Mol Biol. 1994 Sep 23;242(3):271–290. doi: 10.1006/jmbi.1994.1578. [DOI] [PubMed] [Google Scholar]
  21. ten Heggeler-Bordier B., Wahli W., Adrian M., Stasiak A., Dubochet J. The apical localization of transcribing RNA polymerases on supercoiled DNA prevents their rotation around the template. EMBO J. 1992 Feb;11(2):667–672. doi: 10.1002/j.1460-2075.1992.tb05098.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES