Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1997 Dec;73(6):3030–3038. doi: 10.1016/S0006-3495(97)78331-0

Trehalose-induced destabilization of interdigitated gel phase in dihexadecylphosphatidylcholine.

H Takahashi 1, H Ohmae 1, I Hatta 1
PMCID: PMC1181208  PMID: 9414217

Abstract

Trehalose is believed to have the ability to protect some organisms against low temperatures. To clarify the cryoprotective mechanism of trehalose, the structure and the phase behavior of fully hydrated dihexadecylphosphatidylcholine (DHPC) membranes in the presence of various concentrations of trehalose were studied by means of differential scanning calorimetry (DSC), static x-ray diffraction, and simultaneous x-ray diffraction and DSC measurements. The temperature of the interdigitated gel (Lbeta(i))-to-ripple (Pbeta') phase transition of DHPC decreases with a rise in trehalose concentration up to approximately 1.0 M. Above a trehalose concentration of approximately 1.0 M, no Lbeta(i) phase is observed. In this connection, the electron density profile calculated from the lamellar diffraction data in the presence of 1.6 M trehalose indicates that DHPC forms noninterdigitated bilayers below the P beta' phase. It was concluded that trehalose destabilizes the Lbeta(i) phase of DHPC bilayers. This suggests that trehalose reduces the area at the interface between the lipid and water. The relation between this effect of trehalose and a low temperature tolerance was discussed from the viewpoint of cold-induced denaturation of proteins.

Full text

PDF
3030

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi T., Takahashi H., Ohki K., Hatta I. Interdigitated structure of phospholipid-alcohol systems studied by x-ray diffraction. Biophys J. 1995 May;68(5):1850–1855. doi: 10.1016/S0006-3495(95)80361-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arakawa T., Timasheff S. N. Stabilization of protein structure by sugars. Biochemistry. 1982 Dec 7;21(25):6536–6544. doi: 10.1021/bi00268a033. [DOI] [PubMed] [Google Scholar]
  3. Arnett E. M., Harvey N., Johnson E. A., Johnston D. S., Chapman D. No phospholipid monolayer-sugar interactions. Biochemistry. 1986 Sep 9;25(18):5239–5242. doi: 10.1021/bi00366a038. [DOI] [PubMed] [Google Scholar]
  4. Blaurock A. E., Worthington C. R. Treatment of low angle x-ray data from planar and concentric multilayered structures. Biophys J. 1966 May;6(3):305–312. doi: 10.1016/S0006-3495(66)86658-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bryszewska M., Epand R. M. Effects of sugar alcohols and disaccharides in inducing the hexagonal phase and altering membrane properties: implications for diabetes mellitus. Biochim Biophys Acta. 1988 Sep 1;943(3):485–492. doi: 10.1016/0005-2736(88)90381-1. [DOI] [PubMed] [Google Scholar]
  6. Chowdhry B. Z., Lipka G., Sturtevant J. M. Thermodynamics of phospholipid-sucrose interactions. Biophys J. 1984 Sep;46(3):419–422. doi: 10.1016/S0006-3495(84)84038-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Collins K. D., Washabaugh M. W. The Hofmeister effect and the behaviour of water at interfaces. Q Rev Biophys. 1985 Nov;18(4):323–422. doi: 10.1017/s0033583500005369. [DOI] [PubMed] [Google Scholar]
  8. Copeland B. R., McConnel H. M. The rippled structure in bilayer membranes of phosphatidylcholine and binary mixtures of phosphatidylcholine and cholesterol. Biochim Biophys Acta. 1980 Jun 20;599(1):95–109. doi: 10.1016/0005-2736(80)90059-0. [DOI] [PubMed] [Google Scholar]
  9. Crowe J. H., Crowe L. M., Carpenter J. F., Aurell Wistrom C. Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J. 1987 Feb 15;242(1):1–10. doi: 10.1042/bj2420001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crowe J. H., Crowe L. M., Chapman D. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science. 1984 Feb 17;223(4637):701–703. doi: 10.1126/science.223.4637.701. [DOI] [PubMed] [Google Scholar]
  11. Crowe L. M., Crowe J. H. Trehalose and dry dipalmitoylphosphatidylcholine revisited. Biochim Biophys Acta. 1988 Dec 22;946(2):193–201. doi: 10.1016/0005-2736(88)90392-6. [DOI] [PubMed] [Google Scholar]
  12. Cunningham B. A., Lis L. J. Thiocyanate and bromide ions influence the bilayer structural parameters of phosphatidylcholine bilayers. Biochim Biophys Acta. 1986 Oct 9;861(2):237–242. doi: 10.1016/0005-2736(86)90425-6. [DOI] [PubMed] [Google Scholar]
  13. Cunningham B. A., Midmore L., Kucuk O., Lis L. J., Westerman M. P., Bras W., Wolfe D. H., Quinn P. J., Qadri S. B. Sterols stabilize the ripple phase structure in dihexadecylphosphatidylcholine. Biochim Biophys Acta. 1995 Jan 26;1233(1):75–83. doi: 10.1016/0005-2736(94)00240-p. [DOI] [PubMed] [Google Scholar]
  14. Estep T. N., Mountcastle D. B., Biltonen R. L., Thompson T. E. Studies on the anomalous thermotropic behavior of aqueous dispersions of dipalmitoylphosphatidylcholine-cholesterol mixtures. Biochemistry. 1978 May 16;17(10):1984–1989. doi: 10.1021/bi00603a029. [DOI] [PubMed] [Google Scholar]
  15. Franks N. P. Structural analysis of hydrated egg lecithin and cholesterol bilayers. I. X-ray diffraction. J Mol Biol. 1976 Jan 25;100(3):345–358. doi: 10.1016/s0022-2836(76)80067-8. [DOI] [PubMed] [Google Scholar]
  16. Gekko K., Morikawa T. Preferential hydration of bovine serum albumin in polyhydric alcohol-water mixtures. J Biochem. 1981 Jul;90(1):39–50. doi: 10.1093/oxfordjournals.jbchem.a133468. [DOI] [PubMed] [Google Scholar]
  17. Gekko K., Timasheff S. N. Thermodynamic and kinetic examination of protein stabilization by glycerol. Biochemistry. 1981 Aug 4;20(16):4677–4686. doi: 10.1021/bi00519a024. [DOI] [PubMed] [Google Scholar]
  18. Hicks A., Dinda M., Singer M. A. The ripple phase of phosphatidylcholines: effect of chain length and cholesterol. Biochim Biophys Acta. 1987 Sep 18;903(1):177–185. doi: 10.1016/0005-2736(87)90167-2. [DOI] [PubMed] [Google Scholar]
  19. Jørgensen K. Calorimetric detection of a sub-main transition in long-chain phosphatidylcholine lipid bilayers. Biochim Biophys Acta. 1995 Dec 13;1240(2):111–114. doi: 10.1016/0005-2736(95)00216-2. [DOI] [PubMed] [Google Scholar]
  20. Kim J. T., Mattai J., Shipley G. G. Gel phase polymorphism in ether-linked dihexadecylphosphatidylcholine bilayers. Biochemistry. 1987 Oct 20;26(21):6592–6598. doi: 10.1021/bi00395a005. [DOI] [PubMed] [Google Scholar]
  21. Kinoshita K., Yamazaki M. Organic solvents induce interdigitated gel structures in multilamellar vesicles of dipalmitoylphosphatidylcholine. Biochim Biophys Acta. 1996 Oct 23;1284(2):233–239. doi: 10.1016/s0005-2736(96)00136-8. [DOI] [PubMed] [Google Scholar]
  22. Koynova R., Caffrey M. Phases and phase transitions of the hydrated phosphatidylethanolamines. Chem Phys Lipids. 1994 Jan;69(1):1–34. doi: 10.1016/0009-3084(94)90024-8. [DOI] [PubMed] [Google Scholar]
  23. Kõiv A., Kinnunen P. K. Influence of Ca2+ and ethanol on the aggregation and thermal phase behaviour of L-dihexadecylphosphatidylcholine liposomes. Chem Phys Lipids. 1992 Oct;62(3):253–261. doi: 10.1016/0009-3084(92)90062-t. [DOI] [PubMed] [Google Scholar]
  24. Laggner P., Lohner K., Degovics G., Müller K., Schuster A. Structure and thermodynamics of the dihexadecylphosphatidylcholine-water system. Chem Phys Lipids. 1987 Jun;44(1):31–60. doi: 10.1016/0009-3084(87)90004-1. [DOI] [PubMed] [Google Scholar]
  25. Levine Y. K., Wilkins M. H. Structure of oriented lipid bilayers. Nat New Biol. 1971 Mar 17;230(11):69–72. doi: 10.1038/newbio230069a0. [DOI] [PubMed] [Google Scholar]
  26. MOODY M. F. X-RAY DIFFRACTION PATTERN OF NERVE MYELIN: A METHOD FOR DETERMINING THE PHASES. Science. 1963 Nov 29;142(3596):1173–1174. doi: 10.1126/science.142.3596.1173. [DOI] [PubMed] [Google Scholar]
  27. Mabrey S., Mateo P. L., Sturtevant J. M. High-sensitivity scanning calorimetric study of mixtures of cholesterol with dimyristoyl- and dipalmitoylphosphatidylcholines. Biochemistry. 1978 Jun 13;17(12):2464–2468. doi: 10.1021/bi00605a034. [DOI] [PubMed] [Google Scholar]
  28. MacNaughtan W., Snook K. A., Caspi E., Franks N. P. An X-ray diffraction analysis of oriented lipid multilayers containing basic proteins. Biochim Biophys Acta. 1985 Aug 27;818(2):132–148. doi: 10.1016/0005-2736(85)90556-5. [DOI] [PubMed] [Google Scholar]
  29. Matuoka S., Kato S., Hatta I. Temperature change of the ripple structure in fully hydrated dimyristoylphosphatidylcholine/cholesterol multibilayers. Biophys J. 1994 Aug;67(2):728–736. doi: 10.1016/S0006-3495(94)80533-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McIntosh T. J. Differences in hydrocarbon chain tilt between hydrated phosphatidylethanolamine and phosphatidylcholine bilayers. A molecular packing model. Biophys J. 1980 Feb;29(2):237–245. doi: 10.1016/S0006-3495(80)85128-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. McIntosh T. J., Simon S. A. Hydration force and bilayer deformation: a reevaluation. Biochemistry. 1986 Jul 15;25(14):4058–4066. doi: 10.1021/bi00362a011. [DOI] [PubMed] [Google Scholar]
  32. McMullen T. P., Lewis R. N., McElhaney R. N. Differential scanning calorimetric study of the effect of cholesterol on the thermotropic phase behavior of a homologous series of linear saturated phosphatidylcholines. Biochemistry. 1993 Jan 19;32(2):516–522. doi: 10.1021/bi00053a016. [DOI] [PubMed] [Google Scholar]
  33. Mortensen K., Pfeiffer W., Sackmann E., Knoll W. Structural properties of a phosphatidylcholine-cholesterol system as studied by small-angle neutron scattering: ripple structure and phase diagram. Biochim Biophys Acta. 1988 Nov 22;945(2):221–245. doi: 10.1016/0005-2736(88)90485-3. [DOI] [PubMed] [Google Scholar]
  34. Nagle J. F., Wiener M. C. Relations for lipid bilayers. Connection of electron density profiles to other structural quantities. Biophys J. 1989 Feb;55(2):309–313. doi: 10.1016/S0006-3495(89)82806-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nagle J. F., Wiener M. C. Structure of fully hydrated bilayer dispersions. Biochim Biophys Acta. 1988 Jul 7;942(1):1–10. doi: 10.1016/0005-2736(88)90268-4. [DOI] [PubMed] [Google Scholar]
  36. Nambi P., Rowe E. S., McIntosh T. J. Studies of the ethanol-induced interdigitated gel phase in phosphatidylcholines using the fluorophore 1,6-diphenyl-1,3,5-hexatriene. Biochemistry. 1988 Dec 27;27(26):9175–9182. doi: 10.1021/bi00426a015. [DOI] [PubMed] [Google Scholar]
  37. Ohki K. Effect of substitution of hydrogen oxide by deuterium oxide on thermotropic transition between the interdigitated gel phase and the ripple phase of dihexadecylphosphatidylcholine. Biochem Biophys Res Commun. 1991 Jan 15;174(1):102–106. doi: 10.1016/0006-291x(91)90491-o. [DOI] [PubMed] [Google Scholar]
  38. Privalov P. L., Gill S. J. Stability of protein structure and hydrophobic interaction. Adv Protein Chem. 1988;39:191–234. doi: 10.1016/s0065-3233(08)60377-0. [DOI] [PubMed] [Google Scholar]
  39. Quinn P. J. A lipid-phase separation model of low-temperature damage to biological membranes. Cryobiology. 1985 Apr;22(2):128–146. doi: 10.1016/0011-2240(85)90167-1. [DOI] [PubMed] [Google Scholar]
  40. Ranck J. L., Tocanne J. F. Choline and acetylcholine induce interdigitation of hydrocarbon chains in dipalmitoylphosphatidylglycerol lamellar phase with stiff chains. FEBS Lett. 1982 Jul 5;143(2):171–174. doi: 10.1016/0014-5793(82)80092-6. [DOI] [PubMed] [Google Scholar]
  41. Ruocco M. J., Siminovitch D. J., Griffin R. G. Comparative study of the gel phases of ether- and ester-linked phosphatidylcholines. Biochemistry. 1985 May 7;24(10):2406–2411. doi: 10.1021/bi00331a003. [DOI] [PubMed] [Google Scholar]
  42. Sanderson P. W., Lis L. J., Quinn P. J., Williams W. P. The Hofmeister effect in relation to membrane lipid phase stability. Biochim Biophys Acta. 1991 Aug 5;1067(1):43–50. doi: 10.1016/0005-2736(91)90024-3. [DOI] [PubMed] [Google Scholar]
  43. Simon S. A., McIntosh T. J. Interdigitated hydrocarbon chain packing causes the biphasic transition behavior in lipid/alcohol suspensions. Biochim Biophys Acta. 1984 Jun 13;773(1):169–172. doi: 10.1016/0005-2736(84)90562-5. [DOI] [PubMed] [Google Scholar]
  44. Swamy M. J., Marsh D. Thermodynamics of interdigitated phases of phosphatidylcholine in glycerol. Biophys J. 1995 Oct;69(4):1402–1408. doi: 10.1016/S0006-3495(95)80009-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Takahashi H., Matuoka S., Kato S., Ohki K., Hatta I. Electrostatic interaction of poly(L-lysine) with dipalmitoylphosphatidic acid studied by X-ray diffraction. Biochim Biophys Acta. 1991 Nov 4;1069(2):229–234. doi: 10.1016/0005-2736(91)90129-v. [DOI] [PubMed] [Google Scholar]
  46. Torbet J., Wilkins M. H. X-ray diffraction studies of lecithin bilayers. J Theor Biol. 1976 Oct 21;62(2):447–458. doi: 10.1016/0022-5193(76)90129-6. [DOI] [PubMed] [Google Scholar]
  47. Tsvetkov T. D., Tsonev L. I., Tsvetkova N. M., Koynova R. D., Tenchov B. G. Effect of trehalose on the phase properties of hydrated and lyophilized dipalmitoylphosphatidylcholine multilayers. Cryobiology. 1989 Apr;26(2):162–169. doi: 10.1016/0011-2240(89)90047-3. [DOI] [PubMed] [Google Scholar]
  48. Vist M. R., Davis J. H. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry. 1990 Jan 16;29(2):451–464. doi: 10.1021/bi00454a021. [DOI] [PubMed] [Google Scholar]
  49. Worthington C. R., Blaurock A. E. A structural analysis of nerve myelin. Biophys J. 1969 Jul;9(7):970–990. doi: 10.1016/S0006-3495(69)86431-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Worthington C. R. The interpretation of low-angle X-ray data from planar and concentric multilayered structures. The use of one-dimensional electron density strip models. Biophys J. 1969 Feb;9(2):222–234. doi: 10.1016/S0006-3495(69)86381-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Yao H., Matuoka S., Tenchov B., Hatta I. Metastable ripple phase of fully hydrated dipalmitoylphosphatidylcholine as studied by small angle x-ray scattering. Biophys J. 1991 Jan;59(1):252–255. doi: 10.1016/S0006-3495(91)82216-0. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES