Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1991 Jan;432:327–341. doi: 10.1113/jphysiol.1991.sp018387

Autoreceptor-mediated purinergic and cholinergic inhibition of motor nerve terminal calcium currents in the rat.

B R Hamilton 1, D O Smith 1
PMCID: PMC1181328  PMID: 1653322

Abstract

1. After blocking K+ currents with 10 mM-tetraethylammonium (TEA) or TEA plus 250 microM-3,4-diaminopyridine (3,4-DAP). motor nerve terminal Ca2+ currents were recorded using focal extracellular electrodes. Two transmitters released from the terminal. ATP and acetylcholine (ACh), were then applied, and the effects on the nerve terminal Ca2+ current were measured. 2. ATP (50 microM) reduced the Ca2+ current by 34%, but this action is prevented when hydrolysis to adenosine is blocked by alpha,beta-methyladenosine 5'-diphosphate (200 microM). Thus, inhibition by ATP presumably occurs subsequent to ATP hydrolysis to adenosine. 3. Adenosine (50 microM) inhibited the terminal Ca2+ current by 29%. This was mimicked by the adenosine analogue L-phenylisopropyl adenosine (L-PIA) and blocked by theophylline (100 microM), which antagonizes adenosine receptors at micromolar concentrations. 4. ACh (100 microM) or the anticholinesterase methane sulphonyl fluoride (MSF; 1 mM) also depressed the terminal Ca2+ current. This response was mimicked by muscarine (100 microM) and antagonized by atropine (100 microM) or pirenzipine (4 microM), which is generally specific for M1 receptors. 5. Addition of Ba2+, which blocks adenosine-mediated K+ currents, had no effect on the inhibitory effects of either adenosine or ACh; similarly, neither adenosine nor ACh in the bath affected K+ current records obtained after blocking all inward currents with 10 mM-Co2+ and focal application of tetrodotoxin. 6. Incubation of the muscle for 4 h in pertussis toxin (10(-5) g ml-1) eliminated both adenosine- and ACh-induced inhibition of the terminal Ca2+ current. This result indicates the possible involvement of a G protein in the transduction of the feedback pathway. 7. Neither cyclic AMP analogues, the adenylate cyclase activator forskolin (10 microM), the phorbol ester phorbol 12-myristate 13-acetate (PMA; 3 microM) nor the diacylglycerol analogue 1,2-oleoylacetylglycerol (OAG; 3 microM) had any effect on adenosine- or ACh-induced depression of the terminal Ca2+ current. Therefore, pathways involving these particular second messengers are most probably not involved. 8. The effects of adenosine and ACh are non-additive. 9. These results indicate that ATP and ACh, which are released during exocytosis, may inhibit their own release through attenuation of the terminal Ca2+ current via autoreceptors coupled to a G protein.

Full text

PDF
327

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auerbach A., Betz W. Does curare affect transmitter release? J Physiol. 1971 Mar;213(3):691–705. doi: 10.1113/jphysiol.1971.sp009409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brigant J. L., Mallart A. Presynaptic currents in mouse motor endings. J Physiol. 1982 Dec;333:619–636. doi: 10.1113/jphysiol.1982.sp014472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burger R. M., Lowenstein J. M. Preparation and properties of 5'-nucleotidase from smooth muscle of small intestine. J Biol Chem. 1970 Dec 10;245(23):6274–6280. [PubMed] [Google Scholar]
  4. Dolphin A. C., Forda S. R., Scott R. H. Calcium-dependent currents in cultured rat dorsal root ganglion neurones are inhibited by an adenosine analogue. J Physiol. 1986 Apr;373:47–61. doi: 10.1113/jphysiol.1986.sp016034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dragunow M., Murphy K., Leslie R. A., Robertson H. A. Localization of adenosine A1-receptors to the terminals of the perforant path. Brain Res. 1988 Oct 18;462(2):252–257. doi: 10.1016/0006-8993(88)90553-7. [DOI] [PubMed] [Google Scholar]
  6. Gilman A. G. G proteins and dual control of adenylate cyclase. Cell. 1984 Mar;36(3):577–579. doi: 10.1016/0092-8674(84)90336-2. [DOI] [PubMed] [Google Scholar]
  7. Gross R. A., Macdonald R. L., Ryan-Jastrow T. 2-Chloroadenosine reduces the N calcium current of cultured mouse sensory neurones in a pertussis toxin-sensitive manner. J Physiol. 1989 Apr;411:585–595. doi: 10.1113/jphysiol.1989.sp017592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gähwiler B. H., Brown D. A. Muscarine affects calcium-currents in rat hippocampal pyramidal cells in vitro. Neurosci Lett. 1987 May 19;76(3):301–306. doi: 10.1016/0304-3940(87)90419-8. [DOI] [PubMed] [Google Scholar]
  9. Hubbard J. I., Jones S. F., Landau E. M. On the mechanism by which calcium and magnesium affect the release of transmitter by nerve impulses. J Physiol. 1968 May;196(1):75–86. doi: 10.1113/jphysiol.1968.sp008495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jones S. W., Salpeter M. M. Absence of [125I] alpha-bungarotoxin binding to motor nerve terminals of frog, lizard and mouse muscle. J Neurosci. 1983 Feb;3(2):326–331. doi: 10.1523/JNEUROSCI.03-02-00326.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kim D., Lewis D. L., Graziadei L., Neer E. J., Bar-Sagi D., Clapham D. E. G-protein beta gamma-subunits activate the cardiac muscarinic K+-channel via phospholipase A2. Nature. 1989 Feb 9;337(6207):557–560. doi: 10.1038/337557a0. [DOI] [PubMed] [Google Scholar]
  12. Lindgren C. A., Moore J. W. Identification of ionic currents at presynaptic nerve endings of the lizard. J Physiol. 1989 Jul;414:201–222. doi: 10.1113/jphysiol.1989.sp017684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Llinás R., Steinberg I. Z., Walton K. Presynaptic calcium currents and their relation to synaptic transmission: voltage clamp study in squid giant synapse and theoretical model for the calcium gate. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2918–2922. doi: 10.1073/pnas.73.8.2918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miledi R., Molenaar P. C., Polak R. L. Alpha-Bungarotoxin enhances transmitter "released" at the neuromuscular junction. Nature. 1978 Apr 13;272(5654):641–643. doi: 10.1038/272641a0. [DOI] [PubMed] [Google Scholar]
  15. Penner R., Dreyer F. Two different presynaptic calcium currents in mouse motor nerve terminals. Pflugers Arch. 1986 Feb;406(2):190–197. doi: 10.1007/BF00586682. [DOI] [PubMed] [Google Scholar]
  16. Phillis J. W., Wu P. H. The role of adenosine and its nucleotides in central synaptic transmission. Prog Neurobiol. 1981;16(3-4):187–239. doi: 10.1016/0301-0082(81)90014-9. [DOI] [PubMed] [Google Scholar]
  17. Reddington M., Lee K. S., Schubert P. An A1-adenosine receptor, characterized by [3H] cyclohexyladenosine binding, mediates the depression of evoked potentials in a rat hippocampal slice preparation. Neurosci Lett. 1982 Mar 5;28(3):275–279. doi: 10.1016/0304-3940(82)90070-2. [DOI] [PubMed] [Google Scholar]
  18. Ribeiro J. A., Sebastião A. M. On the role, inactivation and origin of endogenous adenosine at the frog neuromuscular junction. J Physiol. 1987 Mar;384:571–585. doi: 10.1113/jphysiol.1987.sp016470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Saint D. A., Quastel D. M., Guan Y. Y. Multiple potassium conductances at the mammalian motor nerve terminal. Pflugers Arch. 1987 Nov;410(4-5):408–412. doi: 10.1007/BF00586518. [DOI] [PubMed] [Google Scholar]
  20. Schubert P., Heinemann U., Kolb R. Differential effect of adenosine on pre- and postsynaptic calcium fluxes. Brain Res. 1986 Jun 25;376(2):382–386. doi: 10.1016/0006-8993(86)90204-0. [DOI] [PubMed] [Google Scholar]
  21. Silinsky E. M. Evidence for specific adenosine receptors at cholinergic nerve endings. Br J Pharmacol. 1980;71(1):191–194. doi: 10.1111/j.1476-5381.1980.tb10925.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Silinsky E. M. On the association between transmitter secretion and the release of adenine nucleotides from mammalian motor nerve terminals. J Physiol. 1975 May;247(1):145–162. doi: 10.1113/jphysiol.1975.sp010925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Silinsky E. M. On the mechanism by which adenosine receptor activation inhibits the release of acetylcholine from motor nerve endings. J Physiol. 1984 Jan;346:243–256. doi: 10.1113/jphysiol.1984.sp015019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Smith D. O. Acetylcholine synthesis and release in the extensor digitorum longus muscle of mature and aged rats. J Neurochem. 1990 Apr;54(4):1433–1439. doi: 10.1111/j.1471-4159.1990.tb01980.x. [DOI] [PubMed] [Google Scholar]
  25. Smith D. O. Sources of adenosine released during neuromuscular transmission in the rat. J Physiol. 1991 Jan;432:343–354. doi: 10.1113/jphysiol.1991.sp018388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tabti N., Bourret C., Mallart A. Three potassium currents in mouse motor nerve terminals. Pflugers Arch. 1989 Feb;413(4):395–400. doi: 10.1007/BF00584489. [DOI] [PubMed] [Google Scholar]
  27. Toselli M., Lux H. D. GTP-binding proteins mediate acetylcholine inhibition of voltage dependent calcium channels in hippocampal neurons. Pflugers Arch. 1989 Jan;413(3):319–321. doi: 10.1007/BF00583548. [DOI] [PubMed] [Google Scholar]
  28. Trussell L. O., Jackson M. B. Dependence of an adenosine-activated potassium current on a GTP-binding protein in mammalian central neurons. J Neurosci. 1987 Oct;7(10):3306–3316. doi: 10.1523/JNEUROSCI.07-10-03306.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wanke E., Ferroni A., Malgaroli A., Ambrosini A., Pozzan T., Meldolesi J. Activation of a muscarinic receptor selectively inhibits a rapidly inactivated Ca2+ current in rat sympathetic neurons. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4313–4317. doi: 10.1073/pnas.84.12.4313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wu P. H., Phillis J. W., Thierry D. L. Adenosine receptor agonists inhibit K+-evoked Ca2+ uptake by rat brain cortical synaptosomes. J Neurochem. 1982 Sep;39(3):700–708. doi: 10.1111/j.1471-4159.1982.tb07949.x. [DOI] [PubMed] [Google Scholar]
  31. Yatani A., Hamm H., Codina J., Mazzoni M. R., Birnbaumer L., Brown A. M. A monoclonal antibody to the alpha subunit of Gk blocks muscarinic activation of atrial K+ channels. Science. 1988 Aug 12;241(4867):828–831. doi: 10.1126/science.2457252. [DOI] [PubMed] [Google Scholar]
  32. Ziskind-Conhaim L., Inestrosa N. C., Hall Z. W. Acetylcholinesterase is functional in embryonic rat muscle before its accumulation at the sites of nerve-muscle contact. Dev Biol. 1984 Jun;103(2):369–377. doi: 10.1016/0012-1606(84)90325-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES