Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1991 May;436:169–193. doi: 10.1113/jphysiol.1991.sp018545

Electrogenic uptake of glutamate and aspartate into glial cells isolated from the salamander (Ambystoma) retina.

B Barbour 1, H Brew 1, D Attwell 1
PMCID: PMC1181500  PMID: 1676418

Abstract

The effects of excitatory amino acids on the membrane current of isolated retinal glial cells (Müller cells) were investigated using whole-cell patch clamping. 2. L-Glutamate evoked an inward current at membrane potentials between -140 and +50 mV. The current was larger at more negative potentials. 3. The glutamate-evoked current was activated by external cations with relative efficacies: Na+ much greater than Li+ greater than K+ greater than Cs+, choline. It was activated by internal cations with relative efficacies K+ greater than Rb+ greater than Cs+ much greater than choline. Chloride and divalent cations did not affect the glutamate-evoked current. 4. Raising the intracellular sodium or glutamate concentrations, or raising the extracellular potassium concentration, reduced the current evoked by external glutamate. The suppressive effect of internal glutamate was larger when the internal sodium concentration was high. 5. Some analogues of glutamate also evoked an inward current. Responses to L-aspartate resembled those to glutamate, but for aspartate the apparent affinity was higher and the voltage dependence of the current was steeper. In the physiological potential range the current evoked by a saturating dose of aspartate was less than that evoked by a saturating dose of glutamate. 6. The uptake blocker threo-3-hydroxy-DL-aspartate (30 microM) reduced the glutamate-evoked current, but also generated a current itself. Dihydrokainate (510 microMs) weakly inhibited the glutamate-evoked current without generating a current itself. 7. The commonly used blockers of glutamate-gated ion channels, 2-amino-5-phosphonovalerate (APV; 100 microMs), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 20 microMs), and kynurenate (1mM) had no effect on the glutamate-evoked current. 8. The voltage dependence, cation dependence and pharmacological profile of the current evoked by excitatory amino acids indicate that it is caused by activation of the high-affinity glutamate uptake carrier. This carrier appears to transport one glutamate anion into the cell, one K+ ion out of the cell, and two or more Na+ ions into the cell, on each carrier cycle. At the inner membrane surface some or all of the transported Na+ dissociates from the carrier after the transported glutamate has dissociated. 9. In addition to glutamate, the uptake carrier can also transport aspartate and threo-3-hydroxy-DL-aspartate, but not dihydrokainate.

Full text

PDF
169

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bader C. R., Macleish P. R., Schwartz E. A. A voltage-clamp study of the light response in solitary rods of the tiger salamander. J Physiol. 1979 Nov;296:1–26. doi: 10.1113/jphysiol.1979.sp012988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baetge E. E., Bulloch K., Stallcup W. B. A comparison of glutamate transport in cloned cell lines from the central nervous system. Brain Res. 1979 May 5;167(1):210–214. doi: 10.1016/0006-8993(79)90281-6. [DOI] [PubMed] [Google Scholar]
  3. Balcar V. J., Johnston G. A. The structural specificity of the high affinity uptake of L-glutamate and L-aspartate by rat brain slices. J Neurochem. 1972 Nov;19(11):2657–2666. doi: 10.1111/j.1471-4159.1972.tb01325.x. [DOI] [PubMed] [Google Scholar]
  4. Barbour B., Brew H., Attwell D. Electrogenic glutamate uptake in glial cells is activated by intracellular potassium. Nature. 1988 Sep 29;335(6189):433–435. doi: 10.1038/335433a0. [DOI] [PubMed] [Google Scholar]
  5. Barres B. A., Koroshetz W. J., Swartz K. J., Chun L. L., Corey D. P. Ion channel expression by white matter glia: the O-2A glial progenitor cell. Neuron. 1990 Apr;4(4):507–524. doi: 10.1016/0896-6273(90)90109-s. [DOI] [PubMed] [Google Scholar]
  6. Bowman C. L., Kimelberg H. K. Excitatory amino acids directly depolarize rat brain astrocytes in primary culture. Nature. 1984 Oct 18;311(5987):656–659. doi: 10.1038/311656a0. [DOI] [PubMed] [Google Scholar]
  7. Brew H., Attwell D. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells. 1987 Jun 25-Jul 1Nature. 327(6124):707–709. doi: 10.1038/327707a0. [DOI] [PubMed] [Google Scholar]
  8. Brew H., Gray P. T., Mobbs P., Attwell D. Endfeet of retinal glial cells have higher densities of ion channels that mediate K+ buffering. Nature. 1986 Dec 4;324(6096):466–468. doi: 10.1038/324466a0. [DOI] [PubMed] [Google Scholar]
  9. Burckhardt G., Kinne R., Stange G., Murer H. The effects of potassium and membrane potential on sodium-dependent glutamic acid uptake. Biochim Biophys Acta. 1980 Jun 20;599(1):191–201. doi: 10.1016/0005-2736(80)90067-x. [DOI] [PubMed] [Google Scholar]
  10. Cull-Candy S. G., Howe J. R., Ogden D. C. Noise and single channels activated by excitatory amino acids in rat cerebellar granule neurones. J Physiol. 1988 Jun;400:189–222. doi: 10.1113/jphysiol.1988.sp017117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cull-Candy S. G. Two types of extrajunctional L-glutamate receptors in locust muscle fibres. J Physiol. 1976 Feb;255(2):449–464. doi: 10.1113/jphysiol.1976.sp011289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Drejer J., Larsson O. M., Schousboe A. Characterization of L-glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Exp Brain Res. 1982;47(2):259–269. doi: 10.1007/BF00239385. [DOI] [PubMed] [Google Scholar]
  13. Ehinger B. Glial and neuronal uptake of GABA, glutamic acid, glutamine and glutathione in the rabbit retina. Exp Eye Res. 1977 Sep;25(3):221–234. doi: 10.1016/0014-4835(77)90089-6. [DOI] [PubMed] [Google Scholar]
  14. Erecińska M. The neurotransmitter amino acid transport systems. A fresh outlook on an old problem. Biochem Pharmacol. 1987 Nov 1;36(21):3547–3555. doi: 10.1016/0006-2952(87)90001-3. [DOI] [PubMed] [Google Scholar]
  15. Erecińska M., Troeger M. B., Wilson D. F., Silver I. A. The role of glial cells in regulation of neurotransmitter amino acids in the external environment. II. Mechanism of aspartate transport. Brain Res. 1986 Mar 26;369(1-2):203–214. doi: 10.1016/0006-8993(86)90529-9. [DOI] [PubMed] [Google Scholar]
  16. Erecińska M., Wantorsky D., Wilson D. F. Aspartate transport in synaptosomes from rat brain. J Biol Chem. 1983 Aug 10;258(15):9069–9077. [PubMed] [Google Scholar]
  17. Fenwick E. M., Marty A., Neher E. A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J Physiol. 1982 Oct;331:577–597. doi: 10.1113/jphysiol.1982.sp014393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hablitz J. J., Langmoen I. A. Excitation of hippocampal pyramidal cells by glutamate in the guinea-pig and rat. J Physiol. 1982 Apr;325:317–331. doi: 10.1113/jphysiol.1982.sp014152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hertz L. Functional interactions between neurons and astrocytes I. Turnover and metabolism of putative amino acid transmitters. Prog Neurobiol. 1979;13(3):277–323. doi: 10.1016/0301-0082(79)90018-2. [DOI] [PubMed] [Google Scholar]
  20. Johnston G. A., Kennedy S. M., Twitchin B. Action of the neurotoxin kainic acid on high affinity uptake of L-glutamic acid in rat brain slices. J Neurochem. 1979 Jan;32(1):121–127. doi: 10.1111/j.1471-4159.1979.tb04518.x. [DOI] [PubMed] [Google Scholar]
  21. Kanner B. I., Sharon I. Active transport of L-glutamate by membrane vesicles isolated from rat brain. Biochemistry. 1978 Sep 19;17(19):3949–3953. doi: 10.1021/bi00612a011. [DOI] [PubMed] [Google Scholar]
  22. Kettenmann H., Schachner M. Pharmacological properties of gamma-aminobutyric acid-, glutamate-, and aspartate-induced depolarizations in cultured astrocytes. J Neurosci. 1985 Dec;5(12):3295–3301. doi: 10.1523/JNEUROSCI.05-12-03295.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kimelberg H. K., Pang S., Treble D. H. Excitatory amino acid-stimulated uptake of 22Na+ in primary astrocyte cultures. J Neurosci. 1989 Apr;9(4):1141–1149. doi: 10.1523/JNEUROSCI.09-04-01141.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mayer M. L., Westbrook G. L. Mixed-agonist action of excitatory amino acids on mouse spinal cord neurones under voltage clamp. J Physiol. 1984 Sep;354:29–53. doi: 10.1113/jphysiol.1984.sp015360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mobbs P., Brew H., Attwell D. A quantitative analysis of glial cell coupling in the retina of the axolotl (Ambystoma mexicanum). Brain Res. 1988 Sep 20;460(2):235–245. doi: 10.1016/0006-8993(88)90368-x. [DOI] [PubMed] [Google Scholar]
  26. Nelson P. J., Dean G. E., Aronson P. S., Rudnick G. Hydrogen ion cotransport by the renal brush border glutamate transporter. Biochemistry. 1983 Nov 8;22(23):5459–5463. doi: 10.1021/bi00292a030. [DOI] [PubMed] [Google Scholar]
  27. Newman E. A. Regional specialization of retinal glial cell membrane. Nature. 1984 May 10;309(5964):155–157. doi: 10.1038/309155a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Newman E. A. Voltage-dependent calcium and potassium channels in retinal glial cells. 1985 Oct 31-Nov 6Nature. 317(6040):809–811. doi: 10.1038/317809a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pin J. P., Bockaert J., Recasesn M. The Ca2+/C1- dependent L-[3H]glutamate binding: a new receptor or a particular transport process? FEBS Lett. 1984 Sep 17;175(1):31–36. doi: 10.1016/0014-5793(84)80563-3. [DOI] [PubMed] [Google Scholar]
  30. Sarantis M., Everett K., Attwell D. A presynaptic action of glutamate at the cone output synapse. Nature. 1988 Mar 31;332(6163):451–453. doi: 10.1038/332451a0. [DOI] [PubMed] [Google Scholar]
  31. Sontheimer H., Kettenmann H., Backus K. H., Schachner M. Glutamate opens Na+/K+ channels in cultured astrocytes. Glia. 1988;1(5):328–336. doi: 10.1002/glia.440010505. [DOI] [PubMed] [Google Scholar]
  32. Stallcup W. B., Bulloch K., Baetge E. E. Coupled transport of glutamate and sodium in a cerebellar nerve cell line. J Neurochem. 1979 Jan;32(1):57–65. doi: 10.1111/j.1471-4159.1979.tb04509.x. [DOI] [PubMed] [Google Scholar]
  33. Szczepaniak A. C., Cottrell G. A. Biphasic action of glutamic acid and synpatic inhibition in an identified serotonin-containing neurone. Nat New Biol. 1973 Jan 10;241(106):62–64. doi: 10.1038/newbio241062a0. [DOI] [PubMed] [Google Scholar]
  34. Usowicz M. M., Gallo V., Cull-Candy S. G. Multiple conductance channels in type-2 cerebellar astrocytes activated by excitatory amino acids. Nature. 1989 Jun 1;339(6223):380–383. doi: 10.1038/339380a0. [DOI] [PubMed] [Google Scholar]
  35. Waniewski R. A., Martin D. L. Characterization of L-glutamic acid transport by glioma cells in culture: evidence for sodium-independent, chloride-dependent high affinity influx. J Neurosci. 1984 Sep;4(9):2237–2246. doi: 10.1523/JNEUROSCI.04-09-02237.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wheeler D. D. A model of high affinity glutamic acid transport by rat cortical synaptosomes--a refinement of the originally proposed model. J Neurochem. 1979 Oct;33(4):883–894. doi: 10.1111/j.1471-4159.1979.tb09918.x. [DOI] [PubMed] [Google Scholar]
  37. White R. D., Neal M. J. The uptake of L-glutamate by the retina. Brain Res. 1976 Jul 23;111(1):79–93. doi: 10.1016/0006-8993(76)91050-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES