Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1990 Sep;428:501–516. doi: 10.1113/jphysiol.1990.sp018224

Characteristics of chloride currents activated by noradrenaline in rabbit ear artery cells.

T Amédée 1, W A Large 1, Q Wang 1
PMCID: PMC1181659  PMID: 1700110

Abstract

1. Responses to noradrenaline were studied in isolated rabbit ear artery cells with the nystatin method of whole-cell patch-clamp recording. With this technique it was possible to obtain reproducible responses to noradrenaline which was not possible with traditional whole-cell recording. 2. With NaCl as the major constituent of the bathing solution (potassium-free pipette and external solutions) the reversal potential (Er) of the noradrenaline-evoked current was about 0 mV. When external chloride was replaced by thiocyanate, iodide, nitrate and bromide, Er was shifted to more negative potentials which indicates that a chloride conductance increase contributes to the current activated by noradrenaline. 3. When sodium was substituted by Tris, N-methyl-D-glucamine, choline or barium, Er of the noradrenaline-evoked current did not alter. This result suggests that a cation conductance is not implicated in the response to noradrenaline recorded with the nystatin method of whole-cell recording. 4. The chloride current activated by noradrenaline was blocked by the selective alpha 1-adrenoceptor antagonist prazosin but was not affected by the alpha 2-adrenoceptor antagonist yohimbine. 5. When cells were exposed to zero calcium bathing solutions the amplitude of the current elicited by noradrenaline was unaffected when measured within 1-2 min in zero calcium conditions. Continued exposure to 0 Ca + 1 mM-EGTA solution reversibly abolished the chloride current to noradrenaline. 6. In the presence of caffeine, which releases Ca2+ from internal stores and itself induced an inward current (at a holding potential of -50 mV), noradrenaline did not elicit a current. These data suggest that the chloride current evoked by noradrenaline results from an increase in intracellular concentration of calcium derived from internal stores. 7. The chloride channel blocking agents 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS; 0.5 mM) and furosemide (0.5 mM) produced partial reduction of the noradrenaline-evoked chloride current whereas 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid (SITS), anthracene-9-carboxylic acid (A-9-C) and picrotoxin were ineffective in concentrations of up to 0.5 mM. However DIDS and furosemide were non-selective blockers as both agents were more effective against the adenosine triphosphate-induced cation current.

Full text

PDF
501

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amédée T., Benham C. D., Bolton T. B., Byrne N. G., Large W. A. Potassium, chloride and non-selective cation conductances opened by noradrenaline in rabbit ear artery cells. J Physiol. 1990 Apr;423:551–568. doi: 10.1113/jphysiol.1990.sp018039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amédée T., Large W. A. Microelectrode study on the ionic mechanisms which contribute to the noradrenaline-induced depolarization in isolated cells of the rabbit portal vein. Br J Pharmacol. 1989 Aug;97(4):1331–1337. doi: 10.1111/j.1476-5381.1989.tb12596.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benham C. D., Bolton T. B., Byrne N. G., Large W. A. Action of externally applied adenosine triphosphate on single smooth muscle cells dispersed from rabbit ear artery. J Physiol. 1987 Jun;387:473–488. doi: 10.1113/jphysiol.1987.sp016585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bormann J., Hamill O. P., Sakmann B. Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones. J Physiol. 1987 Apr;385:243–286. doi: 10.1113/jphysiol.1987.sp016493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Byrne N. G., Large W. A. Action of noradrenaline on single smooth muscle cells freshly dispersed from the rat anococcygeus muscle. J Physiol. 1987 Aug;389:513–525. doi: 10.1113/jphysiol.1987.sp016669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Byrne N. G., Large W. A. Membrane ionic mechanisms activated by noradrenaline in cells isolated from the rabbit portal vein. J Physiol. 1988 Oct;404:557–573. doi: 10.1113/jphysiol.1988.sp017306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dikshit K., Vyden J. K., Forrester J. S., Chatterjee K., Prakash R., Swan H. J. Renal and extrarenal hemodynamic effects of furosemide in congestive heart failure after acute myocardial infarction. N Engl J Med. 1973 May 24;288(21):1087–1090. doi: 10.1056/NEJM197305242882102. [DOI] [PubMed] [Google Scholar]
  8. Evans M. G., Marty A. Calcium-dependent chloride currents in isolated cells from rat lacrimal glands. J Physiol. 1986 Sep;378:437–460. doi: 10.1113/jphysiol.1986.sp016229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evans M. G., Marty A., Tan Y. P., Trautmann A. Blockage of Ca-activated Cl conductance by furosemide in rat lacrimal glands. Pflugers Arch. 1986 Jan;406(1):65–68. doi: 10.1007/BF00582955. [DOI] [PubMed] [Google Scholar]
  10. Gray P. T., Ritchie J. M. A voltage-gated chloride conductance in rat cultured astrocytes. Proc R Soc Lond B Biol Sci. 1986 Aug 22;228(1252):267–288. doi: 10.1098/rspb.1986.0055. [DOI] [PubMed] [Google Scholar]
  11. Harvey R. D., Hume J. R. Autonomic regulation of a chloride current in heart. Science. 1989 May 26;244(4907):983–985. doi: 10.1126/science.2543073. [DOI] [PubMed] [Google Scholar]
  12. Honoré E., Martin C., Mironneau C., Mironneau J. An ATP-sensitive conductance in cultured smooth muscle cells from pregnant rat myometrium. Am J Physiol. 1989 Aug;257(2 Pt 1):C297–C305. doi: 10.1152/ajpcell.1989.257.2.C297. [DOI] [PubMed] [Google Scholar]
  13. Horn R., Marty A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol. 1988 Aug;92(2):145–159. doi: 10.1085/jgp.92.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Large W. A. The effect of chloride removal on the responses of the isolated rat anococcygeus muscle to alpha 1-adrenoceptor stimulation. J Physiol. 1984 Jul;352:17–29. doi: 10.1113/jphysiol.1984.sp015275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Marty A., Tan Y. P., Trautmann A. Three types of calcium-dependent channel in rat lacrimal glands. J Physiol. 1984 Dec;357:293–325. doi: 10.1113/jphysiol.1984.sp015501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pacaud P., Loirand G., Lavie J. L., Mironneau C., Mironneau J. Calcium-activated chloride current in rat vascular smooth muscle cells in short-term primary culture. Pflugers Arch. 1989 Apr;413(6):629–636. doi: 10.1007/BF00581813. [DOI] [PubMed] [Google Scholar]
  17. Suzuki H., Kou K. Electrical components contributing to the nerve-mediated contractions in the smooth muscles of the rabbit ear artery. Jpn J Physiol. 1983;33(5):743–756. doi: 10.2170/jjphysiol.33.743. [DOI] [PubMed] [Google Scholar]
  18. Wahlström B. A., Svennerholm B. Potentiation and inhibition of noradrenaline induced contractions of the rat portal vein in anion substituted solutions. Acta Physiol Scand. 1974 Nov;92(3):404–411. doi: 10.1111/j.1748-1716.1974.tb05758.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES