Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1990 Nov;430:1–11. doi: 10.1113/jphysiol.1990.sp018277

Carotid body chemoreceptor response to prolonged hypoxia in the rabbit: effects of domperidone and propranolol.

K Y Li 1, J Ponte 1, C L Sadler 1
PMCID: PMC1181723  PMID: 2128334

Abstract

1. The discharge of single afferent chemoreceptor fibres was recorded from the cut sinus nerve over periods of 60 or 90 min of constant, isocapnic hypoxia (arterial O2 pressure, Pa,O2, 3.13-5.25 kPa), in twenty anaesthetized rabbits, after dividing the sympathetic supply to the carotid body. 2. Under control conditions, discharge after 60 min of hypoxia adapted to a mean (S.E.M.) of 71.95 (2.75)% of that attained at 5 min of hypoxia in twenty-three hypoxic experiments. This adaptation was more pronounced when Pa,O2 was lower than 4 kPa (30 Torr). 3. Domperidone (1 mg kg-1 bolus + 1 mg kg-1 h-1 infusion I.V.), increased normoxic afferent discharge by a mean of 142%. In ten experiments, discharge after 60 min of hypoxia adapted to a mean (S.E.M.) of 56.22 (+/- 3.40)% of that attained at 5 min of hypoxia which was significantly different from control hypoxic runs (P = 0.006). 4. In seven experiments propranolol (1 mg kg-1 bolus + 1 mg kg-1 h-1 infusion I.V.) did not affect the normoxic discharge. The mean adaptation of discharge after 60 min of hypoxia was to 77.43 (3.97)% of discharge attained at 5 min of hypoxia, which was not significantly different from control hypoxic runs (P = 0.34). 5. Under control conditions plasma [K+] increased steadily during 60 min of hypoxia, in fourteen experiments, from a mean of 2.76 (0.14) to 2.85 (0.12) mmol l-1 but this was not significant (P = 0.21). Domperidone (n = 6) did not affect plasma [K+] at any time, but after propranolol (n = 6) it increased by a mean (S.E.M.) of 0.39 (0.09) mmol l-1 (P = 0.01) in normoxia and by a further 0.62 (0.28) mmol l-1 (P = 0.08) at 60 min of hypoxia. 6. The results suggest that the adaptation of chemoreceptor discharge to hypoxia in the rabbit is not mediated by changes in plasma [K+]; in addition, endogenous dopamine, but not noradrenaline, contributes to the maintenance of chemoreceptor discharge in prolonged hypoxia.

Full text

PDF
1

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrogué H. J., Madias N. E. Changes in plasma potassium concentration during acute acid-base disturbances. Am J Med. 1981 Sep;71(3):456–467. doi: 10.1016/0002-9343(81)90182-0. [DOI] [PubMed] [Google Scholar]
  2. Andronikou S., Shirahata M., Mokashi A., Lahiri S. Carotid body chemoreceptor and ventilatory responses to sustained hypoxia and hypercapnia in the cat. Respir Physiol. 1988 Jun;72(3):361–374. doi: 10.1016/0034-5687(88)90094-1. [DOI] [PubMed] [Google Scholar]
  3. Band D. M., Linton R. A. The effect of potassium on carotid body chemoreceptor discharge in the anaesthetized cat. J Physiol. 1986 Dec;381:39–47. doi: 10.1113/jphysiol.1986.sp016311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barnard P., Andronikou S., Pokorski M., Smatresk N., Mokashi A., Lahiri S. Time-dependent effect of hypoxia on carotid body chemosensory function. J Appl Physiol (1985) 1987 Aug;63(2):685–691. doi: 10.1152/jappl.1987.63.2.685. [DOI] [PubMed] [Google Scholar]
  5. Biscoe T. J. Carotid body: structure and function. Physiol Rev. 1971 Jul;51(3):437–495. doi: 10.1152/physrev.1971.51.3.437. [DOI] [PubMed] [Google Scholar]
  6. Bisgard G. E., Kressin N. A., Nielsen A. M., Daristotle L., Smith C. A., Forster H. V. Dopamine blockade alters ventilatory acclimatization to hypoxia in goats. Respir Physiol. 1987 Aug;69(2):245–255. doi: 10.1016/0034-5687(87)90031-4. [DOI] [PubMed] [Google Scholar]
  7. Burger R. E., Estavillo J. A., Kumar P., Nye P. C., Paterson D. J. Effects of potassium, oxygen and carbon dioxide on the steady-state discharge of cat carotid body chemoreceptors. J Physiol. 1988 Jul;401:519–531. doi: 10.1113/jphysiol.1988.sp017176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. D'Silva J. L. The action of adrenaline on serum potassium. J Physiol. 1934 Nov 12;82(4):393–398. doi: 10.1113/jphysiol.1934.sp003190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Duchen M. R., Caddy K. W., Kirby G. C., Patterson D. L., Ponte J., Biscoe T. J. Biophysical studies of the cellular elements of the rabbit carotid body. Neuroscience. 1988 Jul;26(1):291–311. doi: 10.1016/0306-4522(88)90146-7. [DOI] [PubMed] [Google Scholar]
  10. Folgering H., Ponte J., Sadig T. Adrenergic mechanisms and chemoreception in the carotid body of the cat and rabbit. J Physiol. 1982 Apr;325:1–21. doi: 10.1113/jphysiol.1982.sp014131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hellström S., Hanbauer I., Costa E. Selective decrease of dopamine content in rat carotid body during exposure to hypoxic conditions. Brain Res. 1976 Dec 17;118(2):352–355. doi: 10.1016/0006-8993(76)90725-3. [DOI] [PubMed] [Google Scholar]
  12. Lahiri S. Role of arterial O2 flow in peripheral chemoreceptor excitation. Fed Proc. 1980 Jul;39(9):2648–2652. [PubMed] [Google Scholar]
  13. Lundborg P. The effect of adrenergic blockade on potassium concentrations in different conditions. Acta Med Scand Suppl. 1983;672:121–126. doi: 10.1111/j.0954-6820.1983.tb01624.x. [DOI] [PubMed] [Google Scholar]
  14. Nielsen A. M., Bisgard G. E., Vidruk E. H. Carotid chemoreceptor activity during acute and sustained hypoxia in goats. J Appl Physiol (1985) 1988 Oct;65(4):1796–1802. doi: 10.1152/jappl.1988.65.4.1796. [DOI] [PubMed] [Google Scholar]
  15. O'Regan R. G., Acker H. Effects of changes in chemoreceptor activity on extracellular K+ and Ca2+ activities in the cat carotid body. Brain Res. 1988 Apr 5;445(2):268–279. doi: 10.1016/0006-8993(88)91189-4. [DOI] [PubMed] [Google Scholar]
  16. Ponte J., Sadler C. L. Interactions between hypoxia, acetylcholine and dopamine in the carotid body of rabbit and cat. J Physiol. 1989 Mar;410:395–410. doi: 10.1113/jphysiol.1989.sp017540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rose C. E., Jr, Althaus J. A., Kaiser D. L., Miller E. D., Carey R. M. Acute hypoxemia and hypercapnia: increase in plasma catecholamines in conscious dogs. Am J Physiol. 1983 Dec;245(6):H924–H929. doi: 10.1152/ajpheart.1983.245.6.H924. [DOI] [PubMed] [Google Scholar]
  18. Todd E. P., Vick R. L. Kalemotropic effect of epinephrine: analysis with adrenergic agonists and antagonists. Am J Physiol. 1971 Jun;220(6):1964–1969. doi: 10.1152/ajplegacy.1971.220.6.1964. [DOI] [PubMed] [Google Scholar]
  19. Vick R. L., Todd E. P., Luedke D. W. Epinephrine-induced hypokalemia: relation to liver and skeletal muscle. J Pharmacol Exp Ther. 1972 Apr;181(1):139–146. [PubMed] [Google Scholar]
  20. Yarom Y., Spira M. E. Extracellular potassium ions mediate specific neuronal interaction. Science. 1982 Apr 2;216(4541):80–82. doi: 10.1126/science.6278595. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES