Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1990 Nov;430:297–313. doi: 10.1113/jphysiol.1990.sp018292

Responses to excitatory amino acids of Purkinje cells' and neurones of the deep nuclei in cerebellar slice cultures.

E Audinat 1, T Knöpfel 1, B H Gähwiler 1
PMCID: PMC1181738  PMID: 1982313

Abstract

1. The actions of the endogenous excitatory amino acids (EAAS) glutamate (Glu), aspartate (Asp) and homocysteate (HCA) on Purkinje cells and neurones of the deep nuclei in cerebellar slice cultures were investigated using intracellular recordings in the single-electrode voltage-clamp mode and the whole-cell configuration of the patch-clamp technique. 2. Purkinje cells and neurones of deep cerebellar nuclei were identified according to their localization in the living cultures, their morphology as revealed by intracellular injections of Lucifer Yellow and their immunoreactivity to antibodies to the 28 kDa Ca2(+)-binding protein. 3. When Purkinje cells were voltage-clamped near their resting membrane potential in a TTX-containing salt solution, Glu, Asp and HCA induced inward currents which were abolished by 6-cyano-7-nitroxaline-2,3-dione (CNQX), a selective antagonist of the non-N-methyl-D-aspartate (NMDA) subtype of EAA receptors. The selective antagonist of NMDA receptors, D-(-)-2-amino-5-phosphonovaleric acid (D-APV), was ineffective in blocking the responses induced by these three amino acids. NMDA, even at high concentrations and in magnesium-free bathing solution, had no detectable effect on membrane properties of Purkinje cells grown in culture during 11-34 days. 4. In magnesium-containing saline, the amplitude of the responses induced by Glu, Asp and HCA was a linear function of the membrane potential. 5. In contrast, neurones of the deep cerebellar nuclei were responsive to NMDA and the inward currents induced by Glu, Asp and HCA were partially blocked both by CNQX and by D-APV. 6. In magnesium-containing saline, the amplitude of the currents induced by NMDA as well as by the three endogenous EAAs decreased at hyperpolarizing holding potentials whereas the current-voltage relation of the responses induced by quisqualate (QA) was strictly linear. 7. It is concluded that Purkinje cells in cerebellar slice cultures do not express NMDA receptors and that excitation of these neurones by the endogenous amino acids Glu, Asp and HCA is mediated exclusively through the activation of non-NMDA receptors. In the same preparation, neurones of the deep cerebellar nuclei possess NMDA and non-NMDA receptors which can be both activated by the three endogenous excitatory amino acids.

Full text

PDF
297

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Collins G. G., Brown G. A quantitative estimate of the contribution made by various receptor categories to the depolarizations evoked by some excitatory amino acids in the olfactory cortex. Brain Res. 1986 Apr 16;371(1):9–16. doi: 10.1016/0006-8993(86)90804-8. [DOI] [PubMed] [Google Scholar]
  2. Crepel F., Dhanjal S. S., Sears T. A. Effect of glutamate, aspartate and related derivatives on cerebellar purkinje cell dendrites in the rat: an in vitro study. J Physiol. 1982 Aug;329:297–317. doi: 10.1113/jphysiol.1982.sp014304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Crepel F., Dupont J. L., Gardette R. Voltage clamp analysis of the effect of excitatory amino acids and derivatives on Purkinje cell dendrites in rat cerebellar slices maintained in vitro. Brain Res. 1983 Nov 21;279(1-2):311–315. doi: 10.1016/0006-8993(83)90200-7. [DOI] [PubMed] [Google Scholar]
  4. Cull-Candy S. G., Usowicz M. M. On the multiple-conductance single channels activated by excitatory amino acids in large cerebellar neurones of the rat. J Physiol. 1989 Aug;415:555–582. doi: 10.1113/jphysiol.1989.sp017736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cull-Candy S. G., Usowicz M. M. Whole-cell current noise produced by excitatory and inhibitory amino acids in large cerebellar neurones of the rat. J Physiol. 1989 Aug;415:533–553. doi: 10.1113/jphysiol.1989.sp017735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Do K. Q., Herrling P. L., Streit P., Turski W. A., Cuenod M. In vitro release and electrophysiological effects in situ of homocysteic acid, an endogenous N-methyl-(D)-aspartic acid agonist, in the mammalian striatum. J Neurosci. 1986 Aug;6(8):2226–2234. doi: 10.1523/JNEUROSCI.06-08-02226.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dupont J. L., Gardette R., Crepel F. Postnatal development of the chemosensitivity of rat cerebellar Purkinje cells to excitatory amino acids. An in vitro study. Brain Res. 1987 Jul;431(1):59–68. doi: 10.1016/0165-3806(87)90195-7. [DOI] [PubMed] [Google Scholar]
  8. Gardette R., Crepel F. Chemoresponsiveness of intracellular nuclei neurones to L-aspartate, L-glutamate and related derivatives in rat cerebellar slices maintained in vitro. Neuroscience. 1986 May;18(1):93–103. doi: 10.1016/0306-4522(86)90181-8. [DOI] [PubMed] [Google Scholar]
  9. Garthwaite G., Yamini B., Jr, Garthwaite J. Selective loss of Purkinje and granule cell responsiveness to N-methyl-D-aspartate in rat cerebellum during development. Brain Res. 1987 Dec 1;433(2):288–292. doi: 10.1016/0165-3806(87)90034-4. [DOI] [PubMed] [Google Scholar]
  10. Gähwiler B. H. Organotypic monolayer cultures of nervous tissue. J Neurosci Methods. 1981 Dec;4(4):329–342. doi: 10.1016/0165-0270(81)90003-0. [DOI] [PubMed] [Google Scholar]
  11. Gähwiler B. H. Slice cultures of cerebellar, hippocampal and hypothalamic tissue. Experientia. 1984 Mar 15;40(3):235–243. doi: 10.1007/BF01947561. [DOI] [PubMed] [Google Scholar]
  12. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  13. Hamon B., Crepel F., Debono M. Voltage-dependency of the responses of cerebellar Purkinje cells to excitatory amino acids. Brain Res. 1987 Sep 1;419(1-2):379–382. doi: 10.1016/0006-8993(87)90612-3. [DOI] [PubMed] [Google Scholar]
  14. Harris K. M., Miller R. J. CNQX (6-cyano-7-nitroquinoxaline-2,3-dione) antagonizes NMDA-evoked [3H]GABA release from cultured cortical neurons via an inhibitory action at the strychnine-insensitive glycine site. Brain Res. 1989 Jun 5;489(1):185–189. doi: 10.1016/0006-8993(89)90023-1. [DOI] [PubMed] [Google Scholar]
  15. Herrling P. L., Maeder J., Meier C. L., Do K. Q. Differential effects of (D)- and (L)-homocysteic acid on the membrane potential of cat caudate neurons in situ. Neuroscience. 1989;31(1):213–217. doi: 10.1016/0306-4522(89)90043-2. [DOI] [PubMed] [Google Scholar]
  16. Hockberger P. E., Tseng H. Y., Connor J. A. Fura-2 measurements of cultured rat Purkinje neurons show dendritic localization of Ca2+ influx. J Neurosci. 1989 Jul;9(7):2272–2284. doi: 10.1523/JNEUROSCI.09-07-02272.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jahnsen H. Electrophysiological characteristics of neurones in the guinea-pig deep cerebellar nuclei in vitro. J Physiol. 1986 Mar;372:129–147. doi: 10.1113/jphysiol.1986.sp016001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Johnson J. W., Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987 Feb 5;325(6104):529–531. doi: 10.1038/325529a0. [DOI] [PubMed] [Google Scholar]
  19. Kessler M., Baudry M., Lynch G. Quinoxaline derivatives are high-affinity antagonists of the NMDA receptor-associated glycine sites. Brain Res. 1989 Jun 12;489(2):377–382. doi: 10.1016/0006-8993(89)90875-5. [DOI] [PubMed] [Google Scholar]
  20. Kimura H., Okamoto K., Sakai Y. Pharmacological evidence for L-aspartate as the neurotransmitter of cerebellar climbing fibres in the guinea-pig. J Physiol. 1985 Aug;365:103–119. doi: 10.1113/jphysiol.1985.sp015761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Knöpfel T., Zeise M. L., Cuénod M., Zieglgänsberger W. L-homocysteic acid but not L-glutamate is an endogenous N-methyl-D-aspartic acid receptor preferring agonist in rat neocortical neurons in vitro. Neurosci Lett. 1987 Oct 16;81(1-2):188–192. doi: 10.1016/0304-3940(87)90363-6. [DOI] [PubMed] [Google Scholar]
  22. Konnerth A., Llano I., Armstrong C. M. Synaptic currents in cerebellar Purkinje cells. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2662–2665. doi: 10.1073/pnas.87.7.2662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Krishtal O. A., Pidoplichko V. I. A receptor for protons in the nerve cell membrane. Neuroscience. 1980;5(12):2325–2327. doi: 10.1016/0306-4522(80)90149-9. [DOI] [PubMed] [Google Scholar]
  24. Krupa M., Crepel F. Transient Sensitivity of Rat Cerebellar Purkinje Cells to N-methyl-D-aspartate during Development. A Voltage Clamp Study in in vitro Slices. Eur J Neurosci. 1990;2(4):312–316. doi: 10.1111/j.1460-9568.1990.tb00423.x. [DOI] [PubMed] [Google Scholar]
  25. Lee M., Strahlendorf H. K., Strahlendorf J. C. Differential effects of N-methyl-D-aspartic acid and L-homocysteic acid on cerebellar Purkinje neurons. Brain Res. 1988 Jul 19;456(1):104–112. doi: 10.1016/0006-8993(88)90351-4. [DOI] [PubMed] [Google Scholar]
  26. Llano I., Marty A., Johnson J. W., Ascher P., Gähwiler B. H. Patch-clamp recording of amino acid-activated responses in "organotypic" slice cultures. Proc Natl Acad Sci U S A. 1988 May;85(9):3221–3225. doi: 10.1073/pnas.85.9.3221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Llinás R., Mühlethaler M. Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. J Physiol. 1988 Oct;404:241–258. doi: 10.1113/jphysiol.1988.sp017288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mayer M. L., Westbrook G. L., Guthrie P. B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature. 1984 May 17;309(5965):261–263. doi: 10.1038/309261a0. [DOI] [PubMed] [Google Scholar]
  29. Mayer M. L., Westbrook G. L. Mixed-agonist action of excitatory amino acids on mouse spinal cord neurones under voltage clamp. J Physiol. 1984 Sep;354:29–53. doi: 10.1113/jphysiol.1984.sp015360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nowak L., Bregestovski P., Ascher P., Herbet A., Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984 Feb 2;307(5950):462–465. doi: 10.1038/307462a0. [DOI] [PubMed] [Google Scholar]
  31. Olson J. M., Greenamyre J. T., Penney J. B., Young A. B. Autoradiographic localization of cerebellar excitatory amino acid binding sites in the mouse. Neuroscience. 1987 Sep;22(3):913–923. doi: 10.1016/0306-4522(87)92969-1. [DOI] [PubMed] [Google Scholar]
  32. Quinlan J. E., Davies J. Excitatory and inhibitory responses of Purkinje cells, in the rat cerebellum in vivo, induced by excitatory amino acids. Neurosci Lett. 1985 Sep 16;60(1):39–46. doi: 10.1016/0304-3940(85)90378-7. [DOI] [PubMed] [Google Scholar]
  33. Sekiguchi M., Okamoto K., Sakai Y. NMDA-receptors on Purkinje cell dendrites in guinea pig cerebellar slices. Brain Res. 1987 Dec 29;437(2):402–406. doi: 10.1016/0006-8993(87)91661-1. [DOI] [PubMed] [Google Scholar]
  34. Sofroniew M. V., Glasmann W. Golgi-like immunoperoxidase staining of hypothalamic magnocellular neurons that contain vasopressin, oxytocin or neurophysin in the rat. Neuroscience. 1981;6(4):619–643. doi: 10.1016/0306-4522(81)90147-0. [DOI] [PubMed] [Google Scholar]
  35. Van der Want J. J., Wiklund L., Guegan M., Ruigrok T., Voogd J. Anterograde tracing of the rat olivocerebellar system with Phaseolus vulgaris leucoagglutinin (PHA-L). Demonstration of climbing fiber collateral innervation of the cerebellar nuclei. J Comp Neurol. 1989 Oct 1;288(1):1–18. doi: 10.1002/cne.902880102. [DOI] [PubMed] [Google Scholar]
  36. Vollenweider F. X., Cuénod M., Do K. Q. Effect of climbing fiber deprivation on release of endogenous aspartate, glutamate, and homocysteate in slices of rat cerebellar hemispheres and vermis. J Neurochem. 1990 May;54(5):1533–1540. doi: 10.1111/j.1471-4159.1990.tb01201.x. [DOI] [PubMed] [Google Scholar]
  37. Yamada K. A., Dubinsky J. M., Rothman S. M. Quantitative physiological characterization of a quinoxalinedione non-NMDA receptor antagonist. J Neurosci. 1989 Sep;9(9):3230–3236. doi: 10.1523/JNEUROSCI.09-09-03230.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES