Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1990 Dec;431:11–25. doi: 10.1113/jphysiol.1990.sp018318

Magnesium transport in ferret red cells.

P W Flatman 1, L M Smith 1
PMCID: PMC1181762  PMID: 2100303

Abstract

1. Mg2+ efflux from ferret red cells into a nominally Mg2(+)-free medium is 41 +/- 2 mumol (l cell)-1 h-1. The properties of Mg2+ transport can be measured in these cells without the need for Mg2+ loading. 2. Amiloride, quinidine, imipramine and external divalent cations partially inhibit Mg2+ efflux. Maximal inhibition by these agents is about 60-70% suggesting that at least two Mg2+ transport pathways exist. 3. As external Na+ is replaced by choline or N-methyl-D-glucamine Mg2+ efflux is first stimulated, reaching a peak when external [Na+] ([Na+]o) is about 10 mM, and then inhibited. Mg2+ transport reverses direction so net Mg2+ uptake occurs when [Na+]o is reduced below 1 mM. 4. Mg2+ efflux is stimulated when 0.1 mM-EDTA is added to the medium only when [Na+]o is low. 5. Reduction of cell ATP content to about 20 mumol (l cell)-1 by treating cells with 2-deoxyglucose stimulates Mg2+ efflux measured over the 2 h period following depletion. 6. Substantial Mg2+ influx can be observed in ferret red cells when they are incubated in media containing 10 mM-Mg2+. Influx is stimulated by reducing [Na+]o to 10 mM. Further reduction of [Na+]o to below 1 mM reduces Mg2+ uptake. A component of uptake is inhibited by external Co2+. 7. Na(+)-Mg2+ antiport may account for a substantial component of Mg2+ transport in ferret red cells. The direction of transport can be reversed by sufficiently lowering [Na+]o or by increasing external [Mg2+]. Analysis of the conditions at which transport reverses direction suggests transport with a stoichiometry of 1 Na+:1 Mg2+. Antiport with this stoichiometry would also explain maintenance of the physiological level of intracellular ionized Mg2+ in these cells.

Full text

PDF
11

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronson P. S. The renal proximal tubule: a model for diversity of anion exchangers and stilbene-sensitive anion transporters. Annu Rev Physiol. 1989;51:419–441. doi: 10.1146/annurev.ph.51.030189.002223. [DOI] [PubMed] [Google Scholar]
  2. Baker P. F., Crawford A. C. Mobility and transport of magnesium in squid giant axons. J Physiol. 1972 Dec;227(3):855–874. doi: 10.1113/jphysiol.1972.sp010062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DiPolo R., Beaugé L. An ATP-dependent Na+/Mg2+ countertransport is the only mechanism for Mg extrusion in squid axons. Biochim Biophys Acta. 1988 Dec 22;946(2):424–428. doi: 10.1016/0005-2736(88)90418-x. [DOI] [PubMed] [Google Scholar]
  4. Flatman P. W., Andrews P. L. Cation and ATP content of ferret red cells. Comp Biochem Physiol A Comp Physiol. 1983;74(4):939–943. doi: 10.1016/0300-9629(83)90373-0. [DOI] [PubMed] [Google Scholar]
  5. Flatman P. W., Lew V. L. Magnesium buffering in intact human red blood cells measured using the ionophore A23187. J Physiol. 1980 Aug;305:13–30. doi: 10.1113/jphysiol.1980.sp013346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flatman P. W. Sodium and potassium transport in ferret red cells. J Physiol. 1983 Aug;341:545–557. doi: 10.1113/jphysiol.1983.sp014823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Flatman P. W. The control of red cell magnesium. Magnes Res. 1988 Jul;1(1-2):5–11. [PubMed] [Google Scholar]
  8. Flatman P. W. The effects of calcium on potassium transport in ferret red cells. J Physiol. 1987 May;386:407–423. doi: 10.1113/jphysiol.1987.sp016541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Flatman P. W. The effects of magnesium on potassium transport in ferret red cells. J Physiol. 1988 Mar;397:471–487. doi: 10.1113/jphysiol.1988.sp017013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frenkel E. J., Graziani M., Schatzmann H. J. ATP requirement of the sodium-dependent magnesium extrusion from human red blood cells. J Physiol. 1989 Jul;414:385–397. doi: 10.1113/jphysiol.1989.sp017694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Féray J. C., Garay R. A one-to-one Mg2+:Mn2+ exchange in rat erythrocytes. J Biol Chem. 1987 Apr 25;262(12):5763–5768. [PubMed] [Google Scholar]
  12. Féray J. C., Garay R. An Na+-stimulated Mg2+-transport system in human red blood cells. Biochim Biophys Acta. 1986 Mar 27;856(1):76–84. doi: 10.1016/0005-2736(86)90012-x. [DOI] [PubMed] [Google Scholar]
  13. Féray J. C., Garay R. Demonstration of a Na+: Mg2+ exchange in human red cells by its sensitivity to tricyclic antidepressant drugs. Naunyn Schmiedebergs Arch Pharmacol. 1988 Sep;338(3):332–337. doi: 10.1007/BF00173409. [DOI] [PubMed] [Google Scholar]
  14. Günther T., Vormann J. Characterization of Na+/Mg2+ antiport by simultaneous 28Mg2+ influx. Biochem Biophys Res Commun. 1987 Nov 13;148(3):1069–1074. doi: 10.1016/s0006-291x(87)80240-1. [DOI] [PubMed] [Google Scholar]
  15. Günther T., Vormann J. Mg2+ efflux is accomplished by an amiloride-sensitive Na+/Mg2+ antiport. Biochem Biophys Res Commun. 1985 Jul 31;130(2):540–545. doi: 10.1016/0006-291x(85)90450-4. [DOI] [PubMed] [Google Scholar]
  16. Güther T., Vormann J., Förster R. Regulation of intracellular magnesium by Mg2+ efflux. Biochem Biophys Res Commun. 1984 Feb 29;119(1):124–131. doi: 10.1016/0006-291x(84)91627-9. [DOI] [PubMed] [Google Scholar]
  17. Inesi G., Millman M., Eletr S. Temperature-induced transitions of function and structure in sarcoplasmic reticulum membranes. J Mol Biol. 1973 Dec 25;81(4):483–504. doi: 10.1016/0022-2836(73)90518-4. [DOI] [PubMed] [Google Scholar]
  18. Lüdi H., Schatzmann H. J. Some properties of a system for sodium-dependent outward movement of magnesium from metabolizing human red blood cells. J Physiol. 1987 Sep;390:367–382. doi: 10.1113/jphysiol.1987.sp016706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mullins L. J., Brinley F. J., Jr, Spangler S. G., Abercrombie R. F. Magnesium efflux in dialyzed squid axons. J Gen Physiol. 1977 Apr;69(4):389–400. doi: 10.1085/jgp.69.4.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stewart G. W., Ellory J. C., Klein R. A. Increased human red cell cation passive permeability below 12 degrees C. Nature. 1980 Jul 24;286(5771):403–404. doi: 10.1038/286403a0. [DOI] [PubMed] [Google Scholar]
  21. Thornton P. C., Wright P. A., Sacra P. J., Goodier T. E. The ferret, Mustela putorius furo, as a new species in toxicology. Lab Anim. 1979 Apr;13(2):119–124. doi: 10.1258/002367779780943422. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES