Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1990 Dec;431:225–241. doi: 10.1113/jphysiol.1990.sp018328

The osmoreceptor complex in the rat: evidence for interactions between the supraoptic and other diencephalic nuclei.

K Honda 1, H Negoro 1, R E Dyball 1, T Higuchi 1, S Takano 1
PMCID: PMC1181772  PMID: 2100308

Abstract

1. Experiments were undertaken to provide evidence for the existence of a circuit of neuronal interconnections between the supraoptic nucleus (SON), the ventral anteroventral third ventricular region (including the organum vasculosum of the lamina terminalis; ventral AV3V) and the median preoptic nucleus (MnPO), and to determine the importance of these connections in the osmotic control of the neuronal activity of the SON. Extracellular recordings were made in the urethane-anaesthetized male rat from neurones in one of these three sites, while the other two sites were electrically stimulated. 2. During recording from the SON, electrical stimulus pulses applied either to the ventral AV3V or to the MnPO were followed by orthodromic excitation (OD+) or initial short-duration inhibition followed by long-duration excitation (OD- +) of most SON neurones (44/48). The latency of OD+ or OD+ component of OD- + response produced by electrical stimulation of the MnPO was significantly (paired t test, P less than 0.01) shorter than that by the stimulation of the ventral AV3V. None of the neurones we recorded in the SON was activated antidromically by stimulation of either the ventral AV3V or the MnPO. Pressure injection of lidocaine (10%, 50 nl) into the MnPO reversibly depressed the OD+ effect after stimulation of the ventral AV3V in all the SON neurones tested (11/11), while injection of lidocaine into the ventral AV3V did not affect the OD+ effect after stimulation of the MnPO in most neurones (7/9). Both types of observation are consistent with the presence of an excitatory input to SON through the MnPO. 3. Pressure injection of lidocaine into both the ventral AV3V and the MnPO reversibly blocked the activation of SON neurones following an I.P. injection of 1.5 M-NaCl (1 ml) (ventral AV3V 11/11; MnPO, 10/10 cells tested). Injection of lidocaine at both sites, however, did not prevent activation of SON neurones by hypovolaemia (2 ml of blood was withdrawn through a cannula in the right atrium: ventral AV3V, 4/5; MnPO, 4/4 cells tested). The integrity of connections in the ventral AV3V and MnPO thus appeared to be essential for osmotic activation of the SON. 4. Of the 119 ventral AV3V neurones which were tested for their response to electrical stimulation of the SON, forty-nine neurones showed orthodromic excitation (OD+; n = 33) or initial inhibition followed by excitation (OD- +; n = 16). Thirty of the forty-nine OD+ or OD- + neurones also showed antidromic excitation (AD) after electrical stimulation of the MnPO.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
225

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe H., Ogata N. Ionic mechanism for the osmotically-induced depolarization in neurones of the guinea-pig supraoptic nucleus in vitro. J Physiol. 1982 Jun;327:157–171. doi: 10.1113/jphysiol.1982.sp014225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blackburn R. E., Leng G., Russell J. A. Control of magnocellular oxytocin neurones by the region anterior and ventral to the third ventricle (AV3V region) in rats. J Endocrinol. 1987 Aug;114(2):253–261. doi: 10.1677/joe.0.1140253. [DOI] [PubMed] [Google Scholar]
  3. Brimble M. J., Dyball R. E. Characterization of the responses of oxytocin- and vasopressin-secreting neurones in the supraoptic nucleus to osmotic stimulation. J Physiol. 1977 Sep;271(1):253–271. doi: 10.1113/jphysiol.1977.sp011999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buranarugsa P., Hubbard J. I. The neuronal organization of the rat subfornical organ in vitro and a test of the osmo- and morphine-receptor hypotheses. J Physiol. 1979 Jun;291:101–116. doi: 10.1113/jphysiol.1979.sp012802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chaudhry M. A., Dyball R. E., Honda K., Wright N. C. The role of interconnection between supraoptic nucleus and anterior third ventricular region in osmoregulation in the rat. J Physiol. 1989 Mar;410:123–135. doi: 10.1113/jphysiol.1989.sp017524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ferguson A. V., Day T. A., Renaud L. P. Subfornical organ efferents influence the excitability of neurohypophyseal and tuberoinfundibular paraventricular nucleus neurons in the rat. Neuroendocrinology. 1984 Nov;39(5):423–428. doi: 10.1159/000124015. [DOI] [PubMed] [Google Scholar]
  7. Gardiner T. W., Verbalis J. G., Stricker E. M. Impaired secretion of vasopressin and oxytocin in rats after lesions of nucleus medianus. Am J Physiol. 1985 Dec;249(6 Pt 2):R681–R688. doi: 10.1152/ajpregu.1985.249.6.R681. [DOI] [PubMed] [Google Scholar]
  8. Gutman M. B., Ciriello J., Mogenson G. J. Effects of plasma angiotensin II and hypernatremia on subfornical organ neurons. Am J Physiol. 1988 May;254(5 Pt 2):R746–R754. doi: 10.1152/ajpregu.1988.254.5.R746. [DOI] [PubMed] [Google Scholar]
  9. Honda K., Negoro H., Higuchi T., Tadokoro Y. Activation of neurosecretory cells by osmotic stimulation of anteroventral third ventricle. Am J Physiol. 1987 Jun;252(6 Pt 2):R1039–R1045. doi: 10.1152/ajpregu.1987.252.6.R1039. [DOI] [PubMed] [Google Scholar]
  10. Honda K., Negoro H., Higuchi T., Tadokoro Y. The role of the anteroventral 3rd ventricle area in the osmotic control of paraventricular neurosecretory cells. Exp Brain Res. 1989;76(3):497–502. doi: 10.1007/BF00248905. [DOI] [PubMed] [Google Scholar]
  11. Johnson A. K. The periventricular anteroventral third ventricle (AV3V): its relationship with the subfornical organ and neural systems involved in maintaining body fluid homeostasis. Brain Res Bull. 1985 Dec;15(6):595–601. doi: 10.1016/0361-9230(85)90209-6. [DOI] [PubMed] [Google Scholar]
  12. Leng G., Mason W. T., Dyer R. G. The supraoptic nucleus as an osmoreceptor. Neuroendocrinology. 1982 Jan;34(1):75–82. doi: 10.1159/000123280. [DOI] [PubMed] [Google Scholar]
  13. Leng G. Rat supraoptic neurones: the effects of locally applied hypertonic saline. J Physiol. 1980 Jul;304:405–414. doi: 10.1113/jphysiol.1980.sp013332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mangiapane M. L., Thrasher T. N., Keil L. C., Simpson J. B., Ganong W. F. Deficits in drinking and vasopressin secretion after lesions of the nucleus medianus. Neuroendocrinology. 1983 Jul;37(1):73–77. doi: 10.1159/000123518. [DOI] [PubMed] [Google Scholar]
  15. Mangiapane M. L., Thrasher T. N., Keil L. C., Simpson J. B., Ganong W. F. Role for the subfornical organ in vasopressin release. Brain Res Bull. 1984 Jul;13(1):43–47. doi: 10.1016/0361-9230(84)90006-6. [DOI] [PubMed] [Google Scholar]
  16. Mason W. T. Supraoptic neurones of rat hypothalamus are osmosensitive. Nature. 1980 Sep 11;287(5778):154–157. doi: 10.1038/287154a0. [DOI] [PubMed] [Google Scholar]
  17. Miselis R. R., Shapiro R. E., Hand P. J. Subfornical organ efferents to neural systems for control of body water. Science. 1979 Sep 7;205(4410):1022–1025. doi: 10.1126/science.472723. [DOI] [PubMed] [Google Scholar]
  18. Negoro H., Higuchi T., Tadokoro Y., Honda K. Osmoreceptor mechanism for oxytocin release in the rat. Jpn J Physiol. 1988;38(1):19–31. doi: 10.2170/jjphysiol.38.19. [DOI] [PubMed] [Google Scholar]
  19. Ramsay D. J., Thrasher T. N., Keil L. C. The organum vasculosum laminae terminalis: a critical area for osmoreception. Prog Brain Res. 1983;60:91–98. doi: 10.1016/S0079-6123(08)64377-0. [DOI] [PubMed] [Google Scholar]
  20. Saper C. B., Levisohn D. Afferent connections of the median preoptic nucleus in the rat: anatomical evidence for a cardiovascular integrative mechanism in the anteroventral third ventricular (AV3V) region. Brain Res. 1983 Dec 12;288(1-2):21–31. doi: 10.1016/0006-8993(83)90078-1. [DOI] [PubMed] [Google Scholar]
  21. Sawchenko P. E., Swanson L. W. The organization of forebrain afferents to the paraventricular and supraoptic nuclei of the rat. J Comp Neurol. 1983 Aug 1;218(2):121–144. doi: 10.1002/cne.902180202. [DOI] [PubMed] [Google Scholar]
  22. Sayer R. J., Hubbard J. I., Sirett N. E. Rat organum vasculosum laminae terminalis in vitro: responses to transmitters. Am J Physiol. 1984 Aug;247(2 Pt 2):R374–R379. doi: 10.1152/ajpregu.1984.247.2.R374. [DOI] [PubMed] [Google Scholar]
  23. Sgro S., Ferguson A. V., Renaud L. P. Subfornical organ--supraoptic nucleus connections: an electrophysiologic study in the rat. Brain Res. 1984 Jun 11;303(1):7–13. doi: 10.1016/0006-8993(84)90205-1. [DOI] [PubMed] [Google Scholar]
  24. Sladek C. D., Johnson A. K. Effect of anteroventral third ventricle lesions on vasopressin release by organ-cultured hypothalamo-neurohypophyseal explants. Neuroendocrinology. 1983 Jul;37(1):78–84. doi: 10.1159/000123519. [DOI] [PubMed] [Google Scholar]
  25. Tanaka J., Saito H., Kaba H. Subfornical organ and hypothalamic paraventricular nucleus connections with median preoptic nucleus neurons: an electrophysiological study in the rat. Exp Brain Res. 1987;68(3):579–585. doi: 10.1007/BF00249800. [DOI] [PubMed] [Google Scholar]
  26. Tanaka J., Saito H., Yagyu K. Impaired responsiveness of paraventricular neurosecretory neurons to osmotic stimulation in rats after local anesthesia of the subfornical organ. Neurosci Lett. 1989 Mar 13;98(1):51–56. doi: 10.1016/0304-3940(89)90372-8. [DOI] [PubMed] [Google Scholar]
  27. Thrasher T. N., Keil L. C., Ramsay D. J. Lesions of the organum vasculosum of the lamina terminalis (OVLT) attenuate osmotically-induced drinking and vasopressin secretion in the dog. Endocrinology. 1982 May;110(5):1837–1839. doi: 10.1210/endo-110-5-1837. [DOI] [PubMed] [Google Scholar]
  28. Thrasher T. N., Keil L. C. Regulation of drinking and vasopressin secretion: role of organum vasculosum laminae terminalis. Am J Physiol. 1987 Jul;253(1 Pt 2):R108–R120. doi: 10.1152/ajpregu.1987.253.1.R108. [DOI] [PubMed] [Google Scholar]
  29. Tribollet E., Armstrong W. E., Dubois-Dauphin M., Dreifuss J. J. Extra-hypothalamic afferent inputs to the supraoptic nucleus area of the rat as determined by retrograde and anterograde tracing techniques. Neuroscience. 1985 May;15(1):135–148. doi: 10.1016/0306-4522(85)90128-9. [DOI] [PubMed] [Google Scholar]
  30. Tribollet E., Dreifuss J. J. Localization of neurones projecting to the hypothalamic paraventricular nucleus area of the rat: a horseradish peroxidase study. Neuroscience. 1981;6(7):1315–1328. doi: 10.1016/0306-4522(81)90190-1. [DOI] [PubMed] [Google Scholar]
  31. Wilkin L. D., Mitchell L. D., Ganten D., Johnson A. K. The supraoptic nucleus: afferents from areas involved in control of body fluid homeostasis. Neuroscience. 1989;28(3):573–584. doi: 10.1016/0306-4522(89)90006-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES