Abstract
目的
探讨水溶性壳聚糖水凝胶对糖尿病小鼠感染全层皮肤缺损创面的作用及其机制。
方法
采用实验研究方法。采用循环冻融的方法制备由聚乙烯醇和明胶组成的对照水凝胶及由前述2种材料+水溶性壳聚糖组成的水溶性壳聚糖水凝胶。大体观察第1次冻融前后试管中2种敷料流动性, 并比较12孔板中2种敷料最终形态的外观差异。取细胞株L929和HaCaT, 均分别按照随机数字表法(分组方法下同)分为对照水凝胶组和水溶性壳聚糖水凝胶组, 分别加入相应敷料培养24 h, 采用细胞计数试剂盒8检测细胞增殖活力。取兔血红细胞悬液, 分为生理盐水组、聚乙二醇辛基苯基醚(Triton X-100)组、对照水凝胶组和水溶性壳聚糖水凝胶组, 分别作相应处理后孵育1 h, 采用酶标仪检测红细胞的溶血程度。取24只11~14周龄雌性db/db小鼠, 在其背部制作全层皮肤缺损创面并在创面处滴加耐甲氧西林金黄色葡萄球菌(MRSA)液, 72 h后将小鼠分为空白对照组、磺胺嘧啶银水胶组、对照水凝胶组、水溶性壳聚糖水凝胶组, 分别作相应处理。伤后0(即刻)、7、14、21 d, 大体观察创面愈合情况并计算伤后14、21 d创面愈合率;伤后14 d, 检测创面中MRSA浓度;伤后21 d, 采用苏木精-伊红染色法对创面进行组织学分析, 采用免疫荧光法检测创面中细胞CD31表达并计算其阳性百分率。取Raw264.7细胞, 分为进行相应处理的白细胞介素4(IL-4)组、空白对照组、对照水凝胶组、水溶性壳聚糖水凝胶组, 培养48 h, 采用流式细胞仪检测细胞中CD206阳性细胞百分率。样本数均为3。对数据行独立样本t检验、单因素方差分析、重复测量方差分析、LSD检验及Dunnett T3检验。
结果
试管中2种敷料在进行冻融前都具有一定的流动性, 冻融1次后均形成半固态凝胶。12孔板中2种敷料最终形态均基本呈稳定的半透明片状, 透明度差异不大。培养24 h, 水溶性壳聚糖水凝胶组L929和HaCaT的细胞增殖活力均明显高于对照水凝胶组(t值分别为6.37、7.50, P < 0.01)。孵育1 h, 水溶性壳聚糖水凝胶组红细胞溶血程度明显低于Triton X-100组(P < 0.01), 而与生理盐水组及对照水凝胶组均相近(P > 0.05)。伤后0 d, 4组小鼠创面情况相似。伤后7 d, 空白对照组与对照水凝胶组创面内部淡黄色渗出物较多, 磺胺嘧啶银水胶组与水溶性壳聚糖水凝胶组创面观察到少量渗出。伤后14 d, 空白对照组与对照水凝胶组创面干燥结痂, 无明显上皮覆盖;磺胺嘧啶银水胶组创面痂皮脱落, 可见脓性渗出物;水溶性壳聚糖水凝胶组创面基底呈淡红色, 创面可观察到明显上皮覆盖。伤后14 d, 水溶性壳聚糖水凝胶组创面愈合率显著高于其他3组(P值均 < 0.01)。伤后21 d, 水溶性壳聚糖水凝胶组创面已完全闭合, 其他3组创面均未完全愈合;水溶性壳聚糖水凝胶组创面愈合率显著高于其他3组(P值均 < 0.01)。伤后14 d, 水溶性壳聚糖水凝胶组创面的MRSA浓度明显低于空白对照组(P < 0.01), 但与对照水凝胶组和磺胺嘧啶银水胶组均相近(P > 0.05)。伤后21 d, 空白对照组创面新生表皮缺损严重;对照水凝胶组创面的表皮亦有大面积缺损;磺胺嘧啶银水胶组创面尚未形成完整新生表皮;水溶性壳聚糖水凝胶组创面不仅被新生表皮完全覆盖, 且新生表皮基底细胞排列规整。伤后21 d, 水溶性壳聚糖水凝胶组创面中CD31阳性百分率为(2.19±0.35)%, 明显高于空白对照组的(0.18±0.05)%、对照水凝胶组的(0.23±0.06)%以及磺胺嘧啶银水胶组的(0.62±0.25)%, P值均 < 0.01。培养48 h, 水溶性壳聚糖水凝胶组Raw264.7中CD206阳性细胞百分率明显低于IL-4组(P < 0.01), 但明显高于空白对照组与对照水凝胶组(P < 0.05或P < 0.01)。
结论
水溶性壳聚糖水凝胶生物安全性好, 较不含水溶性壳聚糖的对照水凝胶能诱导更高水平的巨噬细胞M2型极化, 因此可以提升糖尿病小鼠MRSA感染的全层皮肤缺损创面的修复效果, 并促进创面快速愈合。
Keywords: 水凝胶, 壳聚糖, 感染, 皮肤, 慢性创面, 创面修复
Abstract
Objective
To explore the effects and mechanism of water-soluble chitosan hydrogel on infected full-thickness skin defect wounds in diabetic mice.
Methods
The experimental research method was adopted. The control hydrogel composed of polyvinyl alcohol and gelatin, and the water-soluble chitosan hydrogel composed of the aforementioned two materials and water-soluble chitosan were prepared by the cyclic freeze-thaw method. The fluidity of the two dressings in test tube before and after the first freeze-thawing was generally observed, and the difference in appearance of the final state of two dressings in 12-well plates were compared. According to random number table (the same grouping method below), the cell strains of L929 and HaCaT were both divided into water-soluble chitosan hydrogel group and control hydrogel group, respectively. After adding corresponding dressings and culturing for 24 h, the cell proliferation activity was measured using cell counting kit 8. Rabbit blood erythrocyte suspensions were divided into normal saline group, polyethylene glycol octyl phenyl ether (Triton X-100) group, water-soluble chitosan hydrogel group, and control hydrogel group, which were treated accordingly and incubated for 1 hour, and then the hemolysis degree of erythrocyte was detected by a microplate reader. Twenty-four female db/db mice aged 11-14 weeks were selected, and full-thickness skin defect wounds on their backs were inflicted and inoculated with the methicillin-resistant Staphylococcus aureus (MRSA), 72 h later, the mice were divided into blank control group, sulfadiazine silver hydrogel group, control hydrogel group, and water-soluble chitosan hydrogel group, which were treated accordingly. On post injury day (PID) 0 (immediately), 7, 14, and 21, the healing of the wound was observed. On PID 14 and 21, the wound healing rate was calculated. On PID 14, MRSA concentration in wounds was determined. On PID 21, the wounds were histologically analyzed by hematoxylin and eosin staining; the expression of CD31 in the wounds was detected by immunofluorescence method, and its positive percentage was calculated. Raw264.7 cells were taken and divided into interleukin-4 (IL-4) group, blank control group, control hydrogel group, and water-soluble chitosan hydrogel group, which were treated accordingly. At 48 h of culture, the percentages of CD206 positive cells were detected by flow cytometry. The number of samples was all 3. Data were statistically analyzed with independent sample t test, one-way analysis of variance, analysis of variance for repeated measurement, least significant difference test, and Dunnett T3 test.
Results
Two dressings in test tube had certain fluidity before freeze-thawing and formed semi-solid gels after freeze-thawing for once. The final forms of two dressings in 12-well plates were basically stable and translucent sheets, with little difference in transparency. At 24 h of culture, the cell proliferation activities of L929 and HaCaT in water-soluble chitosan hydrogel group were significantly higher than those in control hydrogel group (with t values of 6.37 and 7.50, respectively, P < 0.01). At 1 h of incubation, the hemolysis degree of erythrocyte in water-soluble chitosan hydrogel group was significantly lower than that in Triton X-100 group (P < 0.01), but similar to that in normal saline group and control hydrogel group (P > 0.05). On PID 0, the traumatic conditions of mice in the 4 groups were similar. On PID 7, more yellowish exudates were observed inside the wound in blank control group and control hydrogel group, while a small amount of exudates were observed in the wound in sulfadiazine silver hydrogel group and water-soluble chitosan hydrogel group. On PID 14, the wounds in blank control group and control hydrogel group were dry and crusted without obvious epithelial coverage; in sulfadiazine silver hydrogel group, the scabs fell off and purulent exudate was visible on the wound; in water-soluble chitosan hydrogel group, the base of wound was light red and obvious epithelial coverage could be observed on the wound. On PID 14, the wound healing rate in water-soluble chitosan hydrogel group was significantly higher than that in the other 3 groups (all P < 0.01). On PID 21, the wound in water-soluble chitosan hydrogel group was completely closed, while the wounds in the other 3 groups were not completely healed; the wound healing rate in water-soluble chitosan hydrogel group was significantly higher than that in the other 3 groups (all P < 0.01). On PID 14, the concentration of MRSA in the wound in water-soluble chitosan hydrogel group was significantly lower than that in blank control group (P < 0.01), but similar to that in control hydrogel group and sulfadiazine silver hydrogel group (P > 0.05). On PID 21, the new epidermis was severely damaged in blank control group; the epidermis on the wound in control hydrogel group also had a large area of defect; complete new epidermis had not yet being formed on the wound in sulfadiazine silver hydrogel group; the wound in water-soluble chitosan hydrogel group was not only completely covered by the new epidermis, the basal cells of the new epidermis were also regularly aligned. On PID 21, the percentage of CD31 positivity in the wound in water-soluble chitosan hydrogel group was (2.19±0.35)%, which was significantly higher than (0.18±0.05)% in blank control group, (0.23±0.06)% in control hydrogel group, and (0.62±0.25)% in sulfadiazine silver hydrogel group, all P < 0.01. At 48 h of culture, the percentage of CD206 positive Raw264.7 cells in water-soluble chitosan hydrogel group was lower than that in IL-4 group (P > 0.01) but significantly higher than that in blank control group and control hydrogel group (P < 0.05 or P < 0.01).
Conclusions
The water-soluble chitosan hydrogel has good biosafety and can induce higher level of macrophage M2 polarization than control hydrogel without water-soluble chitosan, so it can enhance the repair effect of MRSA-infected full-thickness skin defect wounds in diabetic mice and promote rapid wound healing.
Keywords: Hydrogel, Chitosan, Infection, Skin, Chronic wound, Wound repair
压疮、糖尿病足、静脉溃疡等慢性创面给社会和患者家庭造成沉重负担[1-5]。而对于感染严重的慢性创面, 如何在降低细菌负荷的同时促进其上皮化仍是亟待解决的难点[6], 临床上迫切需要兼具控制感染与促进愈合作用的功能化敷料。近年来, 壳聚糖对巨噬细胞极化表型的调控作用被大量报道, 其作为细胞支架或创面敷料在皮肤再生与创面修复领域中的应用得到普遍验证[7-8], 但通常情况下, 天然壳聚糖的溶解性较差[9-10]。前期研究证实:经聚乙二醇修饰的壳聚糖具有水溶性, 对皮肤、眼及阴道黏膜均无刺激性, 且不致敏[11-12]。水溶性壳聚糖(如肽益糖-Ⅰ)的水溶液在细菌感染创面中的抗菌性与生物相容性平衡也已在先前的文献中得到了报道[13]。但能否将水溶性壳聚糖用于制备具有抗菌且促愈合功能的敷料, 从而促进慢性创面快速修复仍需进一步验证。
基于上述现状, 本研究在db/db小鼠感染创面模型中评价了水溶性壳聚糖水凝胶对创面愈合的作用, 并探讨了该敷料在调控Raw264.7巨噬细胞极化方面的相关机制, 以期为临床慢性创面的治疗提供新的功能化敷料和治疗策略。
1. 材料与方法
1.1. 动物、细胞、菌株及主要试剂与仪器来源
24只健康无特殊病原体级11~14周龄、体重50~80 g、雌性db/db小鼠由斯贝福(北京)实验动物科技有限公司提供, 许可证号:SCXK(京)2019-0010。小鼠Fb株L929、人永生化KC株HaCaT、小鼠单核巨噬细胞株Raw264.7购于北京索莱宝科技有限公司。耐甲氧西林金黄色葡萄球菌(MRSA)ATCC 43300购于美国模式培养物集存库。水溶性壳聚糖由本研究团队在前期预实验中制备。聚乙烯醇、DMEM高糖培养基、胎牛血清、兔重组CD31多克隆抗体、Alexa Fluor 594标记的山羊抗兔IgG多克隆抗体购于上海赛默飞世尔科技(中国)有限公司, 细胞计数试剂盒8(CCK-8)购于日本同仁化学研究所中国(上海)代表处, 青霉素/链霉素混合液、抗凝兔全血、聚乙二醇辛基苯基醚(Triton X-100)、胰蛋白胨大豆肉汤(TSB)、含有4', 6-二脒基-2-苯基吲哚(DAPI)的封片剂、γ干扰素、IL-4购于北京索莱宝科技有限公司, 金黄色葡萄球菌显色培养基购于广东环凯微生物科技有限公司, 藻青蛋白标记的大鼠抗小鼠CD206单克隆抗体购于北京达科为生物技术有限公司, 磺胺嘧啶银水胶敷料购自法国优格医疗用品公司。FD-A10N型台式冷冻干燥机购于冠森生物科技(上海)有限公司, Pannoramic 250 FLASH Ⅲ型数字全景扫描仪购于匈牙利3DHISTECH公司, N-C2-SIM型激光共聚焦-结构照明超分辨荧光显微镜(以下简称荧光显微镜)购于尼康仪器(上海)有限公司。
1.2. 水凝胶敷料的制备
于试管中将质量分数10%的聚乙烯醇溶液、质量分数5%的明胶溶液与质量浓度256 μg/mL的水溶性壳聚糖溶液以1∶1∶2的体积比混合并通过循环冻融方式制成水溶性壳聚糖水凝胶。上述溶液均以生理盐水为溶剂配制。同时, 将前述混合溶液平铺于12孔板中(每孔0.5 mL), 再进行循环冻融获得若干直径为2 cm的片状水凝胶敷料, 用于后续实验。对照水凝胶的制备原料成分(不含水溶性壳聚糖)、配比及程序均同前。大体观察第1次冻融前后试管中2种敷料流动性, 并比较12孔板中2种敷料最终形态的外观差异。
1.3. 水凝胶敷料生物安全性评价
1.3.1. 细胞增殖活力
取细胞株L929和HaCaT, 分别用含有胎牛血清、青霉素/链霉素混合液的常规DMEM高糖培养基调整细胞浓度为2×104个/mL, 接种于12孔板中, 每孔1 mL。细胞贴壁后弃去原培养基, 按照随机数字表法(分组方法下同)分别将2种细胞分为对照水凝胶组和水溶性壳聚糖水凝胶组, 每组3孔, 分别加入1.2中制作的相应水凝胶敷料各1片。各组细胞常规培养24 h后, 采用CCK-8检测细胞在波长450 nm处的吸光度值, 反映细胞增殖活力。
1.3.2. 溶血实验
取体积分数5%兔血红细胞悬液(用兔全血+生理盐水配制)加入12孔板中, 每孔1 mL, 分为生理盐水组、Triton X-100组、对照水凝胶组和水溶性壳聚糖水凝胶组, 每组3孔。生理盐水组红细胞悬液中加入1 mL生理盐水, Triton X-100组红细胞悬液中加入1 mL用生理盐水配制的终体积分数0.1%的Triton X-100溶液, 对照水凝胶组和水溶性壳聚糖水凝胶组红细胞悬液中分别加入1.2中制备的相应水凝胶敷料各1片, 然后置于37 ℃摇床中孵育1 h, 在4 ℃、1 000×g条件下离心10 min。将上清液转移至96孔板中, 采用酶标仪测定波长540 nm处吸光度值, 反映红细胞破裂程度即溶血程度。
1.4. 动物实验
本研究中对实验动物的处理符合国家和中国科学院理化技术研究所动物伦理委员会的有关规定。
1.4.1. 感染创面模型建立与分组处理
取24只db/db小鼠称重, 常规麻醉。然后对小鼠背部进行剃毛并制造直径约为20 mm的圆形全层皮肤缺损创面。伤后即刻, 对创面滴加50 μL浓度为1×108 CFU/mL过夜培养于TSB中的MRSA菌液, 单笼饲养72 h后, 将小鼠分为空白对照组、磺胺嘧啶银水胶组、对照水凝胶组、水溶性壳聚糖水凝胶组, 每组6只。空白对照组创面不做任何处理, 磺胺嘧啶银水胶组创面覆盖相应大小的磺胺嘧啶银水胶敷料, 对照水凝胶组和水溶性壳聚糖水凝胶组创面分别覆盖1.2中制备的相应片状水凝胶敷料各1片。伤后5 d内每日换药, 后续隔天换药。
1.4.2. 创面愈合情况及愈合率
伤后0(即刻)、7、14、21 d, 大体观察各组3只小鼠创面颜色、渗出及愈合情况。伤后14、21 d, 采用ImageJ图像分析软件(美国国立卫生研究院)测量4组创面愈合面积并计算愈合率, 创面愈合率=(伤后0 d创面面积-伤后其他时间点创面面积)÷伤后0 d创面面积×100%。
1.4.3. 创面中MRSA浓度
伤后14 d, 采用一次性棉拭子对每组剩余3只小鼠创面中心位置的菌群进行取样, 并将其浸泡在1 mL生理盐水中, 取0.1 mL该采样溶液均匀涂布在金黄色葡萄球菌显色培养基上, 在37 ℃培养箱中倒置培养24 h后统计MRSA浓度(CFU/mL)。
1.4.4. 组织学分析
伤后21 d颈椎脱臼处死1.4.2中行大体观察后小鼠, 切取创面组织并固定、脱水、包埋、切片(厚度为4 µm)。取部分切片进行常规HE染色, 用数字全景扫描仪进行扫描, 在NDP图像分析软件(日本滨松光子学株式会社)上观察并截取1.25倍和2.50倍镜下图片, 对其进行测量、分析。本实验样本数为3。
1.4.5. 新生血管情况
取1.4.4中的剩余石蜡切片, 采用免疫荧光法检测新生血管。加入的一抗为兔重组CD31多克隆抗体(稀释比1∶400)、二抗为Alexa Fluor 594标记的山羊抗兔IgG多克隆抗体(稀释比1∶1 000), 采用DAPI进行细胞核染色(阳性为蓝色)。40倍荧光显微镜下获取图像并计算CD31阳性(红色, 指示新生血管)百分率。本实验样本数为3。
1.5. 水溶性壳聚糖水凝胶对巨噬细胞极化的影响
在12孔板中每孔接种2×104个Raw264.7细胞, 将细胞分为空白对照组、IL-4组、对照水凝胶组以及水溶性壳聚糖水凝胶组(每组3孔)。前2组培养基分别为Raw264.7专用培养基、含有终质量浓度2 ng/mL IL-4的条件培养基, 对照水凝胶组与水溶性壳聚糖水凝胶组培养基同空白对照组且另分别添加1.2中制备的对应敷料各1片。常规培养48 h, 采用藻青蛋白标记的大鼠抗小鼠CD206(稀释比为1∶1 000)对细胞进行染色, 通过流式细胞仪收集1×104个活细胞并进行荧光强度分析。比较细胞中CD206阳性细胞百分率。
1.6. 统计学处理
采用SPSS 26.0统计软件进行数据分析。符合正态分布的计量资料数据均以x±s表示。单时间点多组间总体比较采用单因素方差分析, 两组间比较采用独立样本t检验。多时间点多组间总体比较采用两因素重复测量方差分析;方差若齐, 两两比较采用LSD检验(软件自动略去该统计量值), 方差不齐则采用Dunnett T3检验(软件自动略去该统计量值)。P < 0.05为差异有统计学意义。
2. 结果
2.1. 水凝胶成胶情况
试管中对照水凝胶、水溶性壳聚糖水凝胶在进行冻融前均具有一定的流动性, 冻融1次后形成不流动的半固态凝胶, 见图 1A、1B。在12孔板中循环冻融后形成的对照水凝胶呈稳定的圆形半透明片状, 见图 1C;水溶性壳聚糖水凝胶外形与对照水凝胶基本一致, 透明度稍有降低, 见图 1D。
图 1.
2种水凝胶在试管中冻融1次前后流动性以及在12孔板中循环冻融后最终形态。1A、1B.分别为对照水凝胶和水溶性壳聚糖水凝胶, 冻融1次后, 2种溶液均由可流动状态变成不流动的半固态;1C、1D.分别为在12孔板中最终形成的对照水凝胶和水溶性壳聚糖水凝胶(培养皿中展示), 二者均为稳定规则的圆形半透明片状
注:对照水凝胶由聚乙烯醇和明胶制得, 水溶性壳聚糖水凝胶由聚乙烯醇、明胶和水溶性壳聚糖制得
2.2. 细胞增殖活力
培养24 h, 水溶性壳聚糖水凝胶组L929和HaCaT的细胞增殖活力分别为0.999±0.018、1.570±0.016, 均明显高于对照水凝胶组L929和HaCaT的0.919±0.013、1.459±0.020(t值分别为6.37、7.50, P值分别为0.003、0.002)。
2.3. 溶血情况
孵育1 h, 水溶性壳聚糖水凝胶组、Triton X-100组、生理盐水组及对照水凝胶组的红细胞溶血程度分别为0.049 0±0.001 0、1.228 3±0.035 6、0.050 5±0.000 7和0.051 0±0.004 6, 总体比较, 差异有统计学意义(F=2 744.00, P < 0.001)。水溶性壳聚糖水凝胶组红细胞溶血程度明显低于Triton X-100组(P < 0.001), 而与生理盐水组及对照水凝胶组相近(P值分别为0.999、0.998)。
2.4. db/db小鼠感染创面情况
2.4.1. 创面愈合情况及愈合率
伤后0 d, 4组小鼠创面情况均相似。伤后7 d, 空白对照组与对照水凝胶组创面内部淡黄色渗出物较多, 磺胺嘧啶银水胶组与水溶性壳聚糖水凝胶组创面观察到少量渗出。伤后14 d, 空白对照组与对照水凝胶组创面干燥结痂, 基底呈暗红色, 无明显上皮覆盖;磺胺嘧啶银水胶组创面痂皮脱落, 创面湿润, 可见脓性渗出物;水溶性壳聚糖水凝胶组创面基底呈淡红色, 创面可观察到明显上皮覆盖。伤后14 d, 水溶性壳聚糖水凝胶组创面闭合明显, 创面愈合率显著高于其他3组(P值均 < 0.01)。伤后21 d, 水溶性壳聚糖水凝胶组小鼠创面已完全闭合, 创面被新生表皮完全覆盖, 有毛发生长;其他3组创面均未完全愈合。伤后21 d, 水溶性壳聚糖水凝胶组创面愈合率显著高于其他3组(P值均 < 0.01)。见图 2、表 1。
图 2.
4组db/db小鼠耐甲氧西林金黄色葡萄球菌感染全层皮肤缺损创面伤后各时间点愈合情况。2A、2B、2C、2D.分别为空白对照组伤后0、7、14、21 d创面, 图2E显示空白对照组14 d后创面缩小不明显;2F、2G、2H、2I.分别为对照水凝胶组伤后0、7、14、21 d创面, 图2J显示对照水凝胶组各时间点创面面积均分别较图2E有所缩小;2K、2L、2M、2N.分别为磺胺嘧啶银水胶组伤后0、7、14、21 d创面, 图2O显示磺胺嘧啶银水胶组各时间点创面面积分别较图2J有所缩小;2P、2Q、2R、2S.分别为水溶性壳聚糖水凝胶组伤后0、7、14、21 d创面, 图2T显示水溶性壳聚糖水凝胶组各时间点创面面积均分别较图2E、2J、2O明显缩小
注:对照水凝胶由聚乙烯醇和明胶制得, 水溶性壳聚糖水凝胶由聚乙烯醇、明胶和水溶性壳聚糖制得;图中圆形参照物直径为2 cm;图2E、2J、2O、2T为ImageJ图像软件处理后量化图, 图中红色、橙色、黄色、绿色边界内范围均分别表示伤后0(即刻)、7、14、21 d创面面积大小
表 1.
4组db/db小鼠耐甲氧西林金黄色葡萄球菌感染的全层皮肤缺损创面伤后各时间点愈合率比较(%, x±s)
组别 | 样本数 | 14 d | 21 d |
注:对照水凝胶由聚乙烯醇和明胶制得, 水溶性壳聚糖水凝胶由聚乙烯醇、明胶和水溶性壳聚糖制得;处理因素主效应, F=422.86, P < 0.001;时间因素主效应, F=1 788.78, P < 0.001;两者交互作用, F=68.88, P < 0.001;F值、P值为4组间各时间点总体比较所得;P1值为空白对照组与水溶性壳聚糖水凝胶组比较所得;P2值为对照水凝胶组与水溶性壳聚糖水凝胶组比较所得;P3值为磺胺嘧啶银水胶组与水溶性壳聚糖水凝胶组比较所得 | |||
空白对照组 | 3 | 36.94±3.00 | 58.93±4.69 |
对照水凝胶组 | 3 | 18.92±4.42 | 84.33±4.04 |
磺胺嘧啶银水胶组 | 3 | 39.71±5.03 | 88.10±2.01 |
水溶性壳聚糖胶组 | 3 | 83.74±3.30 | 99.76±0.24 |
F值 | 140.70 | 83.74 | |
P值 | < 0.001 | < 0.001 | |
P1值 | < 0.001 | < 0.001 | |
P2值 | < 0.001 | < 0.001 | |
P3值 | < 0.001 | 0.002 |
2.4.2. 创面中MRSA浓度
伤后14 d, 水溶性壳聚糖水凝胶组、空白对照组、对照水凝胶组及磺胺嘧啶银水胶组的小鼠创面MRSA浓度分别为(88±31)、(677±190)、(297±121)、(23±8)CFU/mL, 总体比较, 差异有统计学意义(F=20.21, P < 0.001)。水溶性壳聚糖水凝胶组创面的MRSA浓度明显低于空白对照组(P=0.007), 但与对照水凝胶组、磺胺嘧啶银水胶组相近(P值分别为0.162、 > 0.999)。
2.4.3. 组织学分析
伤后21 d, 空白对照组小鼠创面新生表皮缺损严重;对照水凝胶组小鼠创面表皮亦有大面积缺损;磺胺嘧啶银水胶组小鼠创面尚未形成完整的致密新生表皮;水溶性壳聚糖水凝胶组与以上3组形成明显对比, 不仅创面被新生表皮完全覆盖, 且新生表皮基底细胞排列规整。见图 3。
图 3.
4组db/db小鼠耐甲氧西林金黄色葡萄球菌感染的全层皮肤缺损创面伤后21 d组织学变化苏木精-伊红。3A、3B、3C、3D.分别为空白对照组、对照水凝胶组、磺胺嘧啶银水胶组、水溶性壳聚糖水凝胶组创面, 图3D中的新生表皮长度明显长于图3A、3B、3C, 图片放大倍数为1.25;3E、3F、3G、3H.分别为图3A、3B、3C、3D局部创面放大图, 从左至右显示未封闭的创缘宽度依次缩减, 其中图3H所示创面已完全愈合, 图片放大倍数为2.50
注:对照水凝胶由聚乙烯醇和明胶制得, 水溶性壳聚糖水凝胶由聚乙烯醇、明胶和水溶性壳聚糖制得;图3A、3B、3C、3D中的红色双向箭头指示新生上皮长度, 图3E、3F、3G、3H中的红色单向箭头之间区域指示尚未封闭的创缘宽度
2.4.4. 新生血管情况
伤后21 d, 水溶性壳聚糖水凝胶组、空白对照组、对照水凝胶组及磺胺嘧啶银水胶组小鼠创面中CD31阳性百分率分别为(2.19±0.35)%、(0.18±0.05)%、(0.23±0.06)%、(0.62±0.25)%, 总体比较, 差异有统计学意义(F=56.04, P < 0.001)。水溶性壳聚糖水凝胶组小鼠创面中CD31阳性百分率明显高于其他3组(P值均 < 0.001)。见图 4。
图 4.
4组db/db小鼠耐甲氧西林金黄色葡萄球菌感染的全层皮肤缺损创面伤后21 d CD31阳性表达情况Alexa Fluor 594-4', 6-二脒基-2-苯基吲哚×40。4A、4B、4C、4D.分别为空白对照组、对照水凝胶组、磺胺嘧啶银水胶组、水溶性壳聚糖水凝胶组, 图4D中的CD31阳性表达明显高于图4A、4B、4C
注:对照水凝胶由聚乙烯醇和明胶制得, 水溶性壳聚糖水凝胶由聚乙烯醇、明胶和水溶性壳聚糖制得;细胞核阳性染色为蓝色, CD31阳性细胞染色为红色(指示新生血管)
2.5. 水溶性壳聚糖水凝胶对巨噬细胞极化的影响
培养48 h, 空白对照组、IL-4组、对照水凝胶组与水溶性壳聚糖水凝胶组Raw264.7中CD206阳性细胞百分率分别为(0.38±0.14)%、(58.27±11.66)%、(15.27±2.58)%与(33.14±2.84)%, 总体比较, 差异有统计学意义(F=49.40, P < 0.001)。水溶性壳聚糖水凝胶组Raw264.7中CD206阳性细胞百分率明显低于IL-4组(P=0.003), 但明显高于空白对照组与对照水凝胶组(P值分别为 < 0.001、0.018)。
3. 讨论
用敷料覆盖并保护创面是临床常用的创面治疗方法[14-16], 但慢性创面易受到病原微生物的感染, 创面愈合时间延长[17-18]。如何实现敷料的高效抗菌从而及时控制感染, 同时促进创面愈合是慢性创面治疗中的难点。因此, 在感染创面上应用敷料前需要对伤口进行彻底的清创, 并在敷料中增加磺胺嘧啶银等具有抗菌活性的组分[19-20]。但这些抗菌组分如银离子等可能通过创面进入人体并富集, 产生毒性和不良反应, 影响创面上皮化进程[21-22]。本课题组前期研究表明, 对天然壳聚糖进行化学修饰将其制备成水溶性壳聚糖, 能够保持其抗菌性且其水溶性也能得到明显提升[13, 23];同时在预实验中, 细胞增殖活力实验及溶血实验验证了水溶性壳聚糖在较宽浓度范围内的生物相容性较好, 且具有促感染创面愈合的潜力。
由于湿润环境有助于细胞的增殖及爬行, 因此保持创面部位的湿润环境也是敷料设计应考虑的重要因素[24-25]。水凝胶具有高度可控的三维结构, 具有和天然ECM类似的物理和化学环境, 可为细胞和组织的生长提供营养物质和空间, 是临床常用的创面敷料之一[23, 25]。采用冻融技术制备的聚乙烯醇水凝胶具有良好的生物相容性, 并具有渗透小分子、阻断细菌污染、高含水量和高透明度等理想的物理化学性能[26-27]。而明胶在成胶过程中可以与壳聚糖相互交联组成网状结构水凝胶, 并在创面上通过保水、协助细胞黏附、提供细胞支持、促进细胞迁移增殖等方式有效促进创面愈合[28-29]。本研究将水溶性壳聚糖与聚乙烯醇、明胶混合后, 经循环冻融形成生物安全性较好的水凝胶敷料, 不仅不会引起红细胞溶血, 且对2种皮肤相关细胞的增殖活力起到了促进作用。
本课题组前期的db/m小鼠感染创面修复预实验表明, 水溶性壳聚糖水凝胶的抗菌作用明显, 采用该敷料治疗的直径为15 mm的db/m小鼠全层皮肤缺损创面能够在伤后14 d内完全愈合, 新生上皮完全覆盖创面且创面进一步收缩, 新生血管丰富, 愈合效果良好。本研究进一步在db/db小鼠感染创面模型中研究了水溶性壳聚糖水凝胶对慢性创面感染的在体治疗效果。结果表明, 水溶性壳聚糖水凝胶在控制感染方面与空白对照和对照水凝胶相比有明显优势, 与磺胺嘧啶银水胶无显著差异, 说明水溶性壳聚糖水凝胶具有与磺胺嘧啶银水胶敷料类似的抗菌作用。创面愈合方面, 水溶性壳聚糖水凝胶组小鼠愈合速率最快, 伤后21 d时小鼠创面不仅完全闭合, 甚至有毛发覆盖原创面部位。镜下观察组织切片也能够看到水溶性壳聚糖水凝胶组小鼠创面愈合良好, 新生表皮长度最长, 创缘宽度较小, 新生表皮基底细胞排列较好, 且相较其他各组有更为丰富的CD31表达, 即新生血管密度较高。
为了进一步研究水溶性壳聚糖水凝胶促进db/db小鼠感染创面愈合的机制, 本研究分析了水溶性壳聚糖水凝胶对巨噬细胞极化表型的影响。巨噬细胞是创面愈合过程中的关键参与者, 可分为经典活化型(M1型)和替代活化型(M2型)[30]。M1/M2型巨噬细胞的含量会随着创面愈合阶段的进展而发生改变, 巨噬细胞表型由以M1型为主逐渐转变为以M2型为主, 这种变化对于降低炎症、促进血管形成以及再上皮化有重要作用[31]。但对于慢性创面, 由于血流灌注差、持续性感染等原因, 不同表型巨噬细胞之间的平衡会被破坏、M1型巨噬细胞大量积累, 创面长期处在高水平促炎性细胞因子的浸润下而使愈合停滞在炎症阶段[5]。本课题组前期预实验表明, 培养48 h, 未处理的Raw264.7中CD206与CD86阳性细胞百分率较低, 提示巨噬细胞在未添加敷料或细胞因子刺激时, 无明显极化发生。经过水溶性壳聚糖溶液处理, 有少量M1型巨噬细胞(CD86阳性)出现, 因此水溶性壳聚糖除抗菌性能外, 还可诱导巨噬细胞向M1型极化, 从而使其具有一定吞噬微生物的潜力;而经水溶性壳聚糖溶液处理后的巨噬细胞更多极化为M2表型(CD206阳性), 表明水溶性壳聚糖具有修复损伤组织并促进皮肤再生的潜力。本研究进一步显示, 对照水凝胶与水溶性壳聚糖水凝胶均能够诱导巨噬细胞向M2型极化, 而水溶性壳聚糖水凝胶组中的CD206阳性细胞更为丰富, 一方面证明水溶性壳聚糖能够从凝胶中被释放从而发挥作用, 另一方面也直接验证了水溶性壳聚糖水凝胶具有诱导巨噬细胞向M2型极化从而修复创面的潜能。
综上所述, 水溶性壳聚糖生物相容性较好, 可与聚乙烯醇、明胶形成生物安全性较高的水凝胶敷料, 该敷料可诱导大部分未极化的巨噬细胞向M2表型极化, 在慢性感染创面治疗过程中发挥控制感染与促进愈合的双重作用。但该敷料在体内具体如何响应创面愈合不同阶段的信号分子或标志细胞仍不明确, 需要深入探讨。
Funding Statement
国家自然科学基金面上项目(52073293);中国科学院理化技术研究所所长基金项目;中山市引进高端科研机构创新专项资金(2019AG003)
General Program of National Natural Science Foundation of China (52073293); Presidential Foundation of Technical Institute of Physics and Chemistry of Chinese Academy of Sciences; Innovation Special Foundation for High Level Research Institutions in Zhongshan (2019AG003)
本文亮点
(1) 将水溶性壳聚糖与聚乙烯醇及明胶混合, 通过循环冻融制备了生物相容性良好的水溶性壳聚糖水凝胶。
(2) 水溶性壳聚糖水凝胶能够通过诱导巨噬细胞向M2表型极化, 促进db/db糖尿病小鼠感染创面愈合。
利益冲突 所有作者均声明不存在利益冲突
作者贡献声明 朱萌:酝酿和设计实验、实施研究、采集数据、数据整理、统计分析、撰写论文;陈禹州:酝酿和设计实验、实施研究、采集数据、撰写论文;区锦钊:数据整理、统计分析;李曌、鞠晓燕:文献调研、分析/解释数据;黄沙、胡骁骅、田野、牛忠伟:研究指导、论文修改、经费支持
Contributor Information
黄 沙 (Sha Huang), Email: stellarahuang@sina.com.
牛 忠伟 (Zhongwei Niu), Email: niu@mail.ipc.ac.cn.
References
- 1.Krzyszczyk P, Schloss R, Palmer A, et al. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol. 2018;9:419. doi: 10.3389/fphys.2018.00419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Plikus MV, Guerrero-Juarez CF, Ito M, et al. Regeneration of fat cells from myofibroblasts during wound healing. Science. 2017;355(6326):748–752. doi: 10.1126/science.aai8792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Malik VS, Willett WC, Hu FB. Global obesity: trends, risk factors and policy implications. Nat Rev Endocrinol. 2013;9(1):13–27. doi: 10.1038/nrendo.2012.199. [DOI] [PubMed] [Google Scholar]
- 4.Zimmet P, Alberti KG, Magliano DJ, et al. Diabetes mellitus statistics on prevalence and mortality: facts and fallacies. Nat Rev Endocrinol. 2016;12(10):616–622. doi: 10.1038/nrendo.2016.105. [DOI] [PubMed] [Google Scholar]
- 5.Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014;6(265):265sr6. doi: 10.1126/scitranslmed.3009337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Wolf SJ, Melvin WJ, Gallagher K. Macrophage-mediated inflammation in diabetic wound repair. Semin Cell Dev Biol. 2021;119:111–118. doi: 10.1016/j.semcdb.2021.06.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Vasconcelos DP, Costa M, Amaral IF, et al. Modulation of the inflammatory response to chitosan through M2 macrophage polarization using pro-resolution mediators. Biomaterials. 2015;37:116–123. doi: 10.1016/j.biomaterials.2014.10.035. [DOI] [PubMed] [Google Scholar]
- 8.Vasconcelos DP, de Torre-Minguela C, Gomez AI, et al. 3D chitosan scaffolds impair NLRP3 inflammasome response in macrophages. Acta Biomater. 2019;91:123–134. doi: 10.1016/j.actbio.2019.04.035. [DOI] [PubMed] [Google Scholar]
- 9.Cheung RC, Ng TB, Wong JH, et al. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs. 2015;13(8):5156–5186. doi: 10.3390/md13085156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Dash M, Chiellini F, Ottenbrite RM. Chitosan-a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci. 2011;36(8):981–1014. doi: 10.1016/j.progpolymsci.2011.02.001. [DOI] [Google Scholar]
- 11.Jeong YI, Kim DG, Jang MK, et al. Preparation and spectroscopic characterization of methoxy poly(ethylene glycol) -grafted water-soluble chitosan. Carbohydr Res. 2008;343(2):282–289. doi: 10.1016/j.carres.2007.10.025. [DOI] [PubMed] [Google Scholar]
- 12.Yang C, Gao S, Dagnæs-Hansen F, et al. Impact of PEG chain length on the physical properties and bioactivity of PEGylated chitosan/siRNA nanoparticles in vitro and in vivo. ACS Appl Mater Interfaces. 2017;9(14):12203–12216. doi: 10.1021/acsami.6b16556. [DOI] [PubMed] [Google Scholar]
- 13.Zhu M, Liu P, Shi H, et al. Balancing antimicrobial activity with biological safety: bifunctional chitosan derivative for the repair of wounds with Gram-positive bacterial infections. J Mater Chem B. 2018;6(23):3884–3893. doi: 10.1039/c8tb00620b. [DOI] [PubMed] [Google Scholar]
- 14.Lu H, Yuan L, Yu X, et al. Recent advances of on-demand dissolution of hydrogel dressings[J/OL]. Burns Trauma, 2018, 6: 35[2022-05-07]. https://pubmed.ncbi.nlm.nih.gov/30619904/. DOI: 10.1186/s41038-018-0138-8.
- 15.Thu HE, Zulfakar MH, Ng SF. Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing. Int J Pharm. 2012;434(1/2):375–383. doi: 10.1016/j.ijpharm.2012.05.044. [DOI] [PubMed] [Google Scholar]
- 16.Fakhari A, Berkland C. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater. 2013;9(7):7081–7092. doi: 10.1016/j.actbio.2013.03.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Li C, Ye R, Bouckaert J, et al. Flexible nanoholey patches for antibiotic-free treatments of skin infections. ACS Appl Mater Interfaces. 2017;9(42):36665–36674. doi: 10.1021/acsami.7b12949. [DOI] [PubMed] [Google Scholar]
- 18.Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration. Nature. 2008;453(7193):314–321. doi: 10.1038/nature07039. [DOI] [PubMed] [Google Scholar]
- 19.Powers JG, Higham C, Broussard K, et al. Wound healing and treating wounds: chronic wound care and management. J Am Acad Dermatol. 2016;74(4):607-625; quiz 625-626. doi: 10.1016/j.jaad.2015.08.070. [DOI] [PubMed] [Google Scholar]
- 20.Mohseni M, Shamloo A, Aghababaei Z, et al. Antimicrobial wound dressing containing silver sulfadiazine with high biocompatibility: in vitro study. Artif Organs. 2016;40(8):765–773. doi: 10.1111/aor.12682. [DOI] [PubMed] [Google Scholar]
- 21.Min JH, Patel M, Koh WG. Incorporation of conductive materials into hydrogels for tissue engineering applications. Polymers (Basel) 2018;10(10):1078. doi: 10.3390/polym10101078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Homaeigohar S, Boccaccini AR. Antibacterial biohybrid nanofibers for wound dressings. Acta Biomater. 2020;107:25–49. doi: 10.1016/j.actbio.2020.02.022. [DOI] [PubMed] [Google Scholar]
- 23.Hu T, Cui X, Zhu M, et al. 3D-printable supramolecular hydrogels with shear-thinning property: fabricating strength tunable bioink via dual crosslinking. Bioact Mater. 2020;5(4):808–818. doi: 10.1016/j.bioactmat.2020.06.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.沈 括, 王 许杰, 刘 开拓, et al. 人脂肪间充质干细胞外泌体对小鼠RAW264.7细胞的炎症反应和小鼠全层皮肤缺损创面愈合的影响. 中华烧伤与创面修复杂志. 2022;38(3):215–226. doi: 10.3760/cma.j.cn501120-20201116-00477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Kharaziha M, Baidya A, Annabi N. Rational design of immunomodulatory hydrogels for chronic wound healing. Adv Mater. 2021;33(39):e2100176. doi: 10.1002/adma.202100176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Peppas NA, Stauffer SR. Reinforced uncrosslinked poly (vinyl alcohol) gels produced by cyclic freezing-thawing processes-a short review. J Control Release. 1991;16(3):305–310. doi: 10.1016/0168-3659(91)90007-z. [DOI] [Google Scholar]
- 27.Kita M, Ogura Y, Honda Y, et al. Evaluation of polyvinyl alcohol hydrogel as a soft contact lens material. Graefes Arch Clin Exp Ophthalmol. 1990;228(6):533–537. doi: 10.1007/BF00918486. [DOI] [PubMed] [Google Scholar]
- 28.Xu N, Yuan Y, Ding L, et al. Multifunctional chitosan/gelatin@tannic acid cryogels decorated with in situ reduced silver nanoparticles for wound healing[J/OL]. Burns Trauma, 2022, 10: tkac019[2022-05-09]. https://pubmed.ncbi.nlm.nih.gov/35910193/. DOI: 10.1093/burnst/tkac019.
- 29.Shamloo A, Aghababaie Z, Afjoul H, et al. Fabrication and evaluation of chitosan/gelatin/PVA hydrogel incorporating honey for wound healing applications: an in vitro, in vivo study. Int J Pharm. 2021;592:120068. doi: 10.1016/j.ijpharm.2020.120068. [DOI] [PubMed] [Google Scholar]
- 30.Boniakowski AE, Kimball AS, Jacobs BN, et al. Macrophage-mediated inflammation in normal and diabetic wound healing. J Immunol. 2017;199(1):17–24. doi: 10.4049/jimmunol.1700223. [DOI] [PubMed] [Google Scholar]
- 31.Sebastian W, Sanin David E, Alexander J, et al. Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing. Cell Metabolism. 2021;33(12):2398–2414. doi: 10.1016/j.cmet.2021.10.004. [DOI] [PubMed] [Google Scholar]