Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1986 Jul;376:299–319. doi: 10.1113/jphysiol.1986.sp016155

Interaction between sodium and chloride transport in bovine tracheal epithelium.

J E Langridge-Smith
PMCID: PMC1182800  PMID: 3795076

Abstract

The active transport of Na and Cl across bovine tracheal epithelium was studied in vitro by measuring 22Na and 36Cl fluxes under short-circuit conditions. Under basal conditions, both net Cl secretion and net Na absorption were observed: the sum of these two net fluxes accounted for 85% of the measured short-circuit current. The rate of spontaneous Cl secretion exceeded that of Na absorption by a factor of 2. Indomethacin, an inhibitor of endogenous prostaglandin production, decreased Cl secretion and increased Na absorption, reversing the direction of net transepithelial ion flow from secretion to absorption. The ratio of the change in each net ion flux was about 1:1. 50% of the basal net flux of Na was inhibited by amiloride (10(-4) M). The indomethacin-induced increase in the lumen-to-serosa flux of Na was entirely amiloride sensitive. An amiloride-insensitive fraction of this flux, of constant magnitude, was apparent in both control and indomethacin-treated tissues. The Na transport inhibitor had no effect on unidirectional or net Cl fluxes. Cl secretion was abolished by 4-methyl-diphenylamine-2'-carboxylic acid (50B). The Cl transport inhibitor had no effect on unidirectional or net Na fluxes. The results suggest that the rates of Na and Cl transport may be modulated in a reciprocal fashion by certain agents, which probably act through cyclic AMP, but that the two transport processes are not mutually interdependent in any simple, direct fashion. The lack of evidence for direct interaction between Na and Cl transport raises the possibility that there are separate absorptive and secretory cells in the tracheal epithelium, rather than a single transporting cell.

Full text

PDF
299

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Bazzaz F. J. Role of cyclic AMP in regulation of chloride secretion by canine tracheal mucosa. Am Rev Respir Dis. 1981 Mar;123(3):295–298. doi: 10.1164/arrd.1981.123.3.295. [DOI] [PubMed] [Google Scholar]
  2. Al-Bazzaz F., Yadava V. P., Westenfelder C. Modification of Na and Cl transport in canine tracheal mucosa by prostaglandins. Am J Physiol. 1981 Feb;240(2):F101–F105. doi: 10.1152/ajprenal.1981.240.2.F101. [DOI] [PubMed] [Google Scholar]
  3. Boucher R. C., Gatzy J. T. Characteristics of sodium transport by excised rabbit trachea. J Appl Physiol Respir Environ Exerc Physiol. 1983 Dec;55(6):1877–1883. doi: 10.1152/jappl.1983.55.6.1877. [DOI] [PubMed] [Google Scholar]
  4. Boucher R. C., Stutts M. J., Gatzy J. T. Regional differences in bioelectric properties and ion flow in excised canine airways. J Appl Physiol Respir Environ Exerc Physiol. 1981 Sep;51(3):706–714. doi: 10.1152/jappl.1981.51.3.706. [DOI] [PubMed] [Google Scholar]
  5. Breeze R. G., Wheeldon E. B. The cells of the pulmonary airways. Am Rev Respir Dis. 1977 Oct;116(4):705–777. doi: 10.1164/arrd.1977.116.4.705. [DOI] [PubMed] [Google Scholar]
  6. Di Stefano A., Wittner M., Schlatter E., Lang H. J., Englert H., Greger R. Diphenylamine-2-carboxylate, a blocker of the Cl(-)-conductive pathway in Cl(-)-transporting epithelia. Pflugers Arch. 1985;405 (Suppl 1):S95–100. doi: 10.1007/BF00581787. [DOI] [PubMed] [Google Scholar]
  7. Edmonds C. J., Mackenzie J. Amiloride sensitive and insensitive sodium pathways and the cellular sodium transport pool of colonic epithelium in rats. J Physiol. 1984 Jan;346:61–71. doi: 10.1113/jphysiol.1984.sp015007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Field M., Fromm D., McColl I. Ion transport in rabbit ileal mucosa. I. Na and Cl fluxes and short-circuit current. Am J Physiol. 1971 May;220(5):1388–1396. doi: 10.1152/ajplegacy.1971.220.5.1388. [DOI] [PubMed] [Google Scholar]
  9. Frizzell R. A., Welsh M. J., Smith P. L. Hormonal control of chloride secretion by canine tracheal epithelium: an electrophysiologic analysis. Ann N Y Acad Sci. 1981;372:558–570. doi: 10.1111/j.1749-6632.1981.tb15506.x. [DOI] [PubMed] [Google Scholar]
  10. Helman S. I., Miller D. A. In vitro techniques for avoiding edge damage in studies of frog skin. Science. 1971 Jul 9;173(3992):146–148. doi: 10.1126/science.173.3992.146. [DOI] [PubMed] [Google Scholar]
  11. Jarnigan F., Davis J. D., Bromberg P. A., Gatzy J. T., Boucher R. C. Bioelectric properties and ion transport of excised rabbit trachea. J Appl Physiol Respir Environ Exerc Physiol. 1983 Dec;55(6):1884–1892. doi: 10.1152/jappl.1983.55.6.1884. [DOI] [PubMed] [Google Scholar]
  12. Knowles M., Murray G., Shallal J., Askin F., Ranga V., Gatzy J., Boucher R. Bioelectric properties and ion flow across excised human bronchi. J Appl Physiol Respir Environ Exerc Physiol. 1984 Apr;56(4):868–877. doi: 10.1152/jappl.1984.56.4.868. [DOI] [PubMed] [Google Scholar]
  13. Langridge-Smith J. E., Rao M. C., Field M. Chloride and sodium transport across bovine tracheal epithelium: effects of secretagogues and indomethacin. Pflugers Arch. 1984 Sep;402(1):42–47. doi: 10.1007/BF00584830. [DOI] [PubMed] [Google Scholar]
  14. Lewis S. A., Diamond J. M. Na+ transport by rabbit urinary bladder, a tight epithelium. J Membr Biol. 1976 Aug 27;28(1):1–40. doi: 10.1007/BF01869689. [DOI] [PubMed] [Google Scholar]
  15. Mierson S., Heck G. L., DeSimone S. K., Biber T. U., DeSimone J. A. The identity of the current carriers in canine lingual epithelium in vitro. Biochim Biophys Acta. 1985 Jun 27;816(2):283–293. doi: 10.1016/0005-2736(85)90496-1. [DOI] [PubMed] [Google Scholar]
  16. Murad F., Kimura H. Cyclic nucleotide levels in incubations of guinea pig trachea. Biochim Biophys Acta. 1974 Apr 22;343(2):275–286. doi: 10.1016/0304-4165(74)90092-0. [DOI] [PubMed] [Google Scholar]
  17. Olver R. E., Davis B., Marin M. G., Nadel J. A. Active transport of Na+ and Cl- across the canine tracheal epithelium in vitro. Am Rev Respir Dis. 1975 Dec;112(6):811–815. doi: 10.1164/arrd.1975.112.6.811. [DOI] [PubMed] [Google Scholar]
  18. Palade P. T., Barchi R. L. On the inhibition of muscle membrane chloride conductance by aromatic carboxylic acids. J Gen Physiol. 1977 Jun;69(6):879–896. doi: 10.1085/jgp.69.6.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. I. SHORT-CIRCUIT CURRENT AND NA FLUXES. J Gen Physiol. 1964 Jan;47:567–584. doi: 10.1085/jgp.47.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shorofsky S. R., Field M., Fozzard H. A. Electrophysiology of Cl secretion in canine trachea. J Membr Biol. 1983;72(1-2):105–115. doi: 10.1007/BF01870318. [DOI] [PubMed] [Google Scholar]
  21. Smith P. L., Welsh M. J., Stoff J. S., Frizzell R. A. Chloride secretion by canine tracheal epithelium: I. Role of intracellular c AMP levels. J Membr Biol. 1982;70(3):217–226. doi: 10.1007/BF01870564. [DOI] [PubMed] [Google Scholar]
  22. Tai Y. H., Tai C. Y. The conventional short-circuiting technique under-short-circuits most epithelia. J Membr Biol. 1981 Apr 30;59(3):173–177. doi: 10.1007/BF01875423. [DOI] [PubMed] [Google Scholar]
  23. Vulliemin P., Durand-Arczynska W., Durand J. Electrical properties and electrolyte transport in bovine tracheal epithelium: effects of ion substitutions, transport inhibitors and histamine. Pflugers Arch. 1983 Jan;396(1):54–59. doi: 10.1007/BF00584698. [DOI] [PubMed] [Google Scholar]
  24. Welsh M. J. Anthracene-9-carboxylic acid inhibits an apical membrane chloride conductance in canine tracheal epithelium. J Membr Biol. 1984;78(1):61–71. doi: 10.1007/BF01872533. [DOI] [PubMed] [Google Scholar]
  25. Welsh M. J., Smith P. L., Frizzell R. A. Chloride secretion by canine tracheal epithelium: II. The cellular electrical potential profile. J Membr Biol. 1982;70(3):227–238. doi: 10.1007/BF01870565. [DOI] [PubMed] [Google Scholar]
  26. Welsh M. J., Smith P. L., Frizzell R. A. Chloride secretion by canine tracheal epithelium: III. Membrane resistances and electromotive forces. J Membr Biol. 1983;71(3):209–218. doi: 10.1007/BF01875462. [DOI] [PubMed] [Google Scholar]
  27. Widdicombe J. H., Welsh M. J. Ion transport by dog tracheal epithelium. Fed Proc. 1980 Nov;39(13):3062–3066. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES