Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1986 Jul;376:359–375. doi: 10.1113/jphysiol.1986.sp016158

Dopamine, noradrenaline and isoprenaline: secretory and electrophysiological effects in vitro on mouse pancreas.

Z Berger, R Laugier
PMCID: PMC1182803  PMID: 2432233

Abstract

The amylase release from mouse pancreatic fragments was studied after dopamine (DA), and alpha- or beta-sympathomimetic agonist application. The electrical parameters of the acinar cell membrane were also monitored. Both DA (from 5 X 10(-6) to 10(-4) M) and beta-stimulants (isoprenaline from 5 X 10(-6) to 5 X 10(-5) M; noradrenaline from 3 X 10(-4) to 10(-3) M) evoked an increase in amylase release, while noradrenaline in alpha-receptor stimulating doses failed to have any effect. The stimulatory effect of DA was blocked by ganglion blockers (Arfonad 10(-5) M; pentamethonium 3 X 10(-5) M) in a competitive manner and a dual antagonism was observed with atropine (10(-7) M, 10(-9) M). An alpha-receptor antagonist (phentolamine 10(-5) M) and a beta-receptor antagonist (propranolol 10(-5) M) had no influence on the dopamine response. Moreover, the DA-induced stimulation was dependent on the presence of extracellular calcium. Perfusion with 10(-4) and 10(-3) M-DA or local application (from 77 micrograms to 4.3 mg), resulted in marked membrane depolarization with diminution of the input resistance. This effect was blocked by atropine (10(-5) M) and pentamethonium (10(-4) M), but not by propranolol (10(-5) M) or phentolamine (10(-5) M). The isoprenaline- (IP) and noradrenaline- (NA) induced increase in amylase release was competitively blocked by propranolol (10(-5) M) but not by phentolamine (10(-5) M). Atropine caused a dose-dependent (10(-7) M, 10(-6) M) decrease in the maximal response (non-competitive antagonism), while the ganglion blocker pentamethonium (10(-4) M) was without effect. NA caused membrane depolarization accompanied by a decrease in the input resistance after local application (from 77 micrograms to 1.6 mg). This effect persisted in the presence of 10(-5) M-phentolamine but was abolished by 10(-5) M-propranolol. IP perfusion (10(-4) and 10(-3) M) or local application (0.3 M; from 32 to 130 micrograms) caused the same electrical changes as those induced by NA and DA. The effect of IP persisted in the presence of 10(-5) M-phentolamine, 10(-4) M-pentamethonium and 10(-4) M-domperidone, but was abolished by propranolol (10(-5) M) and tetrodotoxin (5 X 10(-6) M) and markedly diminished by atropine (10(-5) M).(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
359

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bastie M. J., Vaysse N., Brenac B., Pascal J. P., Ribet A. Effects of catecholamines and their inhibitors on the isolated canine pancreas. II. Dopamine. Gastroenterology. 1977 Apr;72(4 Pt 1):719–723. [PubMed] [Google Scholar]
  2. Chariot J., Rozé C., de la Tour J., Souchard M., Vaille C. Modulation of stimulated pancreatic secretion by sympathomimetic amines in the rat. Pharmacology. 1983;26(6):313–323. doi: 10.1159/000137817. [DOI] [PubMed] [Google Scholar]
  3. Davison J. S., Pearson G. T., Petersen O. H. Mouse pancreatic acinar cells: effects of electrical field stimulation on membrane potential and resistance. J Physiol. 1980 Apr;301:295–305. doi: 10.1113/jphysiol.1980.sp013206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Demol P., Sarles H. Action of catecholamines on exocrine pancreatic secretion of conscious rats. Arch Int Pharmacodyn Ther. 1980 Jan;243(1):149–163. [PubMed] [Google Scholar]
  5. Elisha E. E., Hutson D., Scratcherd T. The direct inhibition of pancreatic electrolyte secretion by noradrenaline in the isolated perfused cat pancreas. J Physiol. 1984 Jun;351:77–85. doi: 10.1113/jphysiol.1984.sp015233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Furuta Y., Hashimoto K., Washizaki M. beta-Adrenoceptor stimulation of exocrine secretion from the rat pancreas. Br J Pharmacol. 1978 Jan;62(1):25–29. doi: 10.1111/j.1476-5381.1978.tb07002.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ginsborg B. L., House C. R., Mitchell M. R. On the role of calcium in the electrical responses of cockroach salivary gland cells to dopamine. J Physiol. 1980 Jun;303:325–335. doi: 10.1113/jphysiol.1980.sp013288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gonella J., Niel J. P., Roman C. Mechanism of the noradrenergic motor control on the lower oesophageal sphincter in the cat. J Physiol. 1980 Sep;306:251–260. doi: 10.1113/jphysiol.1980.sp013395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Greengard P., Kebabian J. W. Role of cyclic AMP in synaptic transmission in the mammalian peripheral nervous system. Fed Proc. 1974 Apr;33(4):1059–1067. [PubMed] [Google Scholar]
  10. HINTON J. W., PFEFFER R. B. Some relationships between adrenal medullary and cortical substances and exocrine function of the pancreas in man. Gastroenterology. 1956 Dec;31(6):746–757. [PubMed] [Google Scholar]
  11. Hashimoto K., Sato S., Takeuchi O. Effect of dopamine on pancreatic secretion in the dog. Br J Pharmacol. 1971 Dec;43(4):739–746. doi: 10.1111/j.1476-5381.1971.tb07209.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heidbreder E., Sieber P., Heidland A. Die Wirkung beta-adrenerger Substanzen auf die exokrine Funktion des Pankreas. Untersuchungen am isoliert perfundierten pankreas der Katze. Res Exp Med (Berl) 1977 Aug 16;171(1):79–82. doi: 10.1007/BF01851591. [DOI] [PubMed] [Google Scholar]
  13. Hubel K. A. Response of rabbit pancreas in vitro to adrenergic agonists and antagonists. Am J Physiol. 1970 Dec;219(6):1590–1594. doi: 10.1152/ajplegacy.1970.219.6.1590. [DOI] [PubMed] [Google Scholar]
  14. Iijima F., Iwatsuki K., Chiba S. Effects of dopamine on exocrine secretion and cyclic nucleotide concentration in the dog pancreas. Eur J Pharmacol. 1983 Sep 2;92(3-4):191–197. doi: 10.1016/0014-2999(83)90286-8. [DOI] [PubMed] [Google Scholar]
  15. Iwatsuki N., Petersen O. H. Pancreatic acinar cells: the acetylcholine equilibrium potential and its ionic dependency. J Physiol. 1977 Aug;269(3):735–751. doi: 10.1113/jphysiol.1977.sp011926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Joehl R. J., Rose R. C., Nahrwold D. L. Norepinephrine stimulates amylase release from pancreatic acini. J Surg Res. 1983 Jun;34(6):543–549. doi: 10.1016/0022-4804(83)90107-5. [DOI] [PubMed] [Google Scholar]
  17. Larsson L. I., Rehfeld J. F. Peptidergic and adrenergic innervation of pancreatic ganglia. Scand J Gastroenterol. 1979;14(4):433–437. [PubMed] [Google Scholar]
  18. Laugier R., Petersen O. H. Pancreatic acinar cells: electrophysiological evidence for stimulant-evoked increase in membrane calcium permeability in the mouse. J Physiol. 1980 Jun;303:61–72. doi: 10.1113/jphysiol.1980.sp013270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Libet B., Owman C. Concomitant changes in formaldehyde-induced fluorescence of dopamine interneurones and in slow inhibitory post-synaptic potentials of the rabbit superior cervical ganglion, induced by stimulation of the preganglionic nerve or by a muscarinic agent. J Physiol. 1974 Mar;237(3):635–662. doi: 10.1113/jphysiol.1974.sp010502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lingard J. M., Young J. A. beta-Adrenergic control of exocrine secretion by perfused rat pancreas in vitro. Am J Physiol. 1983 Nov;245(5 Pt 1):G690–G696. doi: 10.1152/ajpgi.1983.245.5.G690. [DOI] [PubMed] [Google Scholar]
  21. Matthews E. K., Petersen O. H., Williams J. A. Pancreatic acinar cells: acetylcholine-induced membrane depolarization, calcium efflux and amylase release. J Physiol. 1973 Nov;234(3):689–701. doi: 10.1113/jphysiol.1973.sp010367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Miyasaka K., Green G. M. Effect of atropine on rat basal pancreatic secretion during return or diversion of bile-pancreatic juice. Proc Soc Exp Biol Med. 1983 Nov;174(2):187–192. doi: 10.3181/00379727-174-41723. [DOI] [PubMed] [Google Scholar]
  23. Pap A., Sarles H. Effect of atropine on different phases of pancreatic secretion in conscious rats. Acta Med Acad Sci Hung. 1980;37(3):305–313. [PubMed] [Google Scholar]
  24. Pearson G. T., Singh J., Petersen O. H. Adrenergic nervous control of cAMP-mediated amylase secretion in the rat pancreas. Am J Physiol. 1984 May;246(5 Pt 1):G563–G573. doi: 10.1152/ajpgi.1984.246.5.G563. [DOI] [PubMed] [Google Scholar]
  25. Petersen O. H., Ueda N. Pancreatic acinar cells: effect of acetylcholine, pancreozymin, gastrin and secretin on membrane potential and resistance in vivo and in vitro. J Physiol. 1975 May;247(2):461–471. doi: 10.1113/jphysiol.1975.sp010941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Petersen O. H., Ueda N. Pancreatic acinar cells: the role of calcium in stimulus-secretion coupling. J Physiol. 1976 Jan;254(3):583–606. doi: 10.1113/jphysiol.1976.sp011248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rozé C., de la Tour J., Chariot J., Souchard M., Vaille C., Dupont C., Jean E., Wepierre J. Isoproterenol induced pancreatic secretion in rats. A comparison with secretin. Biomedicine. 1976 Dec 15;24(6):410–417. [PubMed] [Google Scholar]
  28. Rudick J., Gonda M., Rosenberg I. R., Chapman M. L., Dreiling D. A., Janowitz H. D. Effects of a beta-adrenergic receptor stimulant (isoproterenol) on pancreatic exocrine secretion. Surgery. 1973 Sep;74(3):338–343. [PubMed] [Google Scholar]
  29. Singer M. V., Solomon T. E., Rammert H., Caspary F., Niebel W., Goebell H., Grossman M. I. Effect of atropine on pancreatic response to HCl and secretin. Am J Physiol. 1981 May;240(5):G376–G380. doi: 10.1152/ajpgi.1981.240.5.G376. [DOI] [PubMed] [Google Scholar]
  30. Singh M. Calcium and cyclic nucleotide interaction in secretion of amylase from rat pancreas in vitro. J Physiol. 1979 Nov;296:159–176. doi: 10.1113/jphysiol.1979.sp012997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Singh M., Webster P. D. Neurohormonal control of pancreatic secretion. A review. Gastroenterology. 1978 Feb;74(2 Pt 1):294–309. [PubMed] [Google Scholar]
  32. Tiscornia O. M. Controle nerveux cholinergique du pancréas. Biol Gastroenterol (Paris) 1976 Jul-Aug;9(3):255–275. [PubMed] [Google Scholar]
  33. Vaysse N., Esteve J. P., Brenac B., Moatti J. P., Pascal J. P. Action of dopamine on cyclic AMP-tissue level in the rat pancreas. Interaction with secretin. Biomedicine. 1978 Dec;28(6):342–347. [PubMed] [Google Scholar]
  34. Williams J. A. An in vitro evaluation of possible cholinergic and adrenergic receptors affecting pancreatic amylase secretion. Proc Soc Exp Biol Med. 1975 Nov;150(2):513–516. doi: 10.3181/00379727-150-39067. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES