Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1986 Oct;379:131–144. doi: 10.1113/jphysiol.1986.sp016244

Noradrenaline modulates calcium channels in avian dorsal root ganglion cells through tight receptor-channel coupling.

P Forscher, G S Oxford, D Schulz
PMCID: PMC1182888  PMID: 2435889

Abstract

Averaged ensemble Ba currents were recorded from tissue cultured embryonic chick dorsal root ganglion (d.r.g.) cells using the cell-attached patch-clamp technique. Noradrenaline (NA) applied to extrapatch membrane had no clear consistent effect on drug-free patch currents. This finding supports a previous suggestion that second messengers may not be involved in NA-mediated decreases in Ca currents in sensory neurones (Forscher & Oxford, 1985). Cell-attached patch currents sometimes increased slowly after extrapatch application of NA, but were not reversibly decreased by drug treatment. Large patch currents were used to trigger cellular action potentials. NA reversibly decreased action potential duration as reflected in extracellularly recorded patch action currents. Simultaneously recorded inward patch currents were not affected. D.r.g. cell adenylate cyclase activity was assayed. NA did not affect intracellular cyclic AMP levels at concentrations which cause 30-70% decreases in gCa in dialysed cells (Forscher & Oxford, 1985). Treatment with forskolin (50 microM) or isoprenaline (10 microM) resulted in 60- and 2-fold increases respectively in adenylate cyclase activity over basal levels. These results suggest that NA decreases Ca currents by direct NA interactions with the Ca channel or a molecule tightly coupled to channel function in d.r.g. cells.

Full text

PDF
131

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bean B. P., Nowycky M. C., Tsien R. W. Beta-adrenergic modulation of calcium channels in frog ventricular heart cells. 1984 Jan 26-Feb 1Nature. 307(5949):371–375. doi: 10.1038/307371a0. [DOI] [PubMed] [Google Scholar]
  2. Breitwieser G. E., Szabo G. Uncoupling of cardiac muscarinic and beta-adrenergic receptors from ion channels by a guanine nucleotide analogue. Nature. 1985 Oct 10;317(6037):538–540. doi: 10.1038/317538a0. [DOI] [PubMed] [Google Scholar]
  3. Cachelin A. B., de Peyer J. E., Kokubun S., Reuter H. Ca2+ channel modulation by 8-bromocyclic AMP in cultured heart cells. Nature. 1983 Aug 4;304(5925):462–464. doi: 10.1038/304462a0. [DOI] [PubMed] [Google Scholar]
  4. Canfield D. R., Dunlap K. Pharmacological characterization of amine receptors on embryonic chick sensory neurones. Br J Pharmacol. 1984 Jul;82(3):557–565. doi: 10.1111/j.1476-5381.1984.tb10794.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Daly J. W. The formation, degradation, and function of cyclic nucleotides in the nervous system. Int Rev Neurobiol. 1977;20:105–168. doi: 10.1016/s0074-7742(08)60652-2. [DOI] [PubMed] [Google Scholar]
  6. Dichter M. A., Fischbach G. D. The action potential of chick dorsal root ganglion neurones maintained in cell culture. J Physiol. 1977 May;267(2):281–298. doi: 10.1113/jphysiol.1977.sp011813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dunlap K., Fischbach G. D. Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. J Physiol. 1981 Aug;317:519–535. doi: 10.1113/jphysiol.1981.sp013841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dunlap K., Fischbach G. D. Neurotransmitters decrease the calcium ocmponent of sensory neurone action potentials. Nature. 1978 Dec 21;276(5690):837–839. doi: 10.1038/276837a0. [DOI] [PubMed] [Google Scholar]
  9. Forscher P., Oxford G. S. Modulation of calcium channels by norepinephrine in internally dialyzed avian sensory neurons. J Gen Physiol. 1985 May;85(5):743–763. doi: 10.1085/jgp.85.5.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Green D. A., Clark R. B. Direct evidence for the role of the coupling proteins in forskolin activation of adenylate cyclase. J Cyclic Nucleotide Res. 1982;8(5):337–346. [PubMed] [Google Scholar]
  11. Nowycky M. C., Fox A. P., Tsien R. W. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature. 1985 Aug 1;316(6027):440–443. doi: 10.1038/316440a0. [DOI] [PubMed] [Google Scholar]
  12. Pfaffinger P. J., Martin J. M., Hunter D. D., Nathanson N. M., Hille B. GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature. 1985 Oct 10;317(6037):536–538. doi: 10.1038/317536a0. [DOI] [PubMed] [Google Scholar]
  13. Reuter H. Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature. 1983 Feb 17;301(5901):569–574. doi: 10.1038/301569a0. [DOI] [PubMed] [Google Scholar]
  14. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  15. Schulz D. W., Mailman R. B. An improved, automated adenylate cyclase assay utilizing preparative HPLC: effects of phosphodiesterase inhibitors. J Neurochem. 1984 Mar;42(3):764–774. doi: 10.1111/j.1471-4159.1984.tb02748.x. [DOI] [PubMed] [Google Scholar]
  16. Seamon K. B., Padgett W., Daly J. W. Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3363–3367. doi: 10.1073/pnas.78.6.3363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shimizu H., Daly J. W., Creveling C. R. A radioisotopic method for measuring the formation of adenosine 3',5'-cyclic monophosphate in incubated slices of brain. J Neurochem. 1969 Dec;16(12):1609–1619. doi: 10.1111/j.1471-4159.1969.tb10360.x. [DOI] [PubMed] [Google Scholar]
  18. Su Y. F., Cubeddu L., Perkins J. P. Regulation of adenosine 3':5'-monophosphate content of human astrocytoma cells: desensitization to catecholamines and prostaglandins. J Cyclic Nucleotide Res. 1976 Jul-Aug;2(4):257–270. [PubMed] [Google Scholar]
  19. Tsien R. W., Bean B. P., Hess P., Nowycky M. Calcium channels: mechanisms of beta-adrenergic modulation and ion permeation. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 1):201–212. doi: 10.1101/sqb.1983.048.01.023. [DOI] [PubMed] [Google Scholar]
  20. Tsien R. W. Calcium channels in excitable cell membranes. Annu Rev Physiol. 1983;45:341–358. doi: 10.1146/annurev.ph.45.030183.002013. [DOI] [PubMed] [Google Scholar]
  21. Werz M. A., Macdonald R. L. Heterogeneous sensitivity of cultured dorsal root ganglion neurones to opioid peptides selective for mu- and delta-opiate receptors. Nature. 1982 Oct 21;299(5885):730–733. doi: 10.1038/299730a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES