Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1986 Nov;380:75–92. doi: 10.1113/jphysiol.1986.sp016273

Activation of the contractile apparatus of skinned fibres of frog by the divalent cations barium, cadmium and nickel.

D G Stephenson, R Thieleczek
PMCID: PMC1182925  PMID: 3497265

Abstract

The contractile apparatus of mechanically skinned muscle fibres of frog can be reversibly activated by Ba2+ and Cd2+. The maximum force induced by both Ba2+ and Cd2+ is the same as that induced by Ca2+ and Sr2+. The ionic concentrations of the divalent cations required to induce 50% of the maximum activated force at 1 mM-Mg2+, pH 7.10, 22 degrees C and 250 mM ionic strength are about 8 X 10(-7) M for Ca2+, 5 X 10(-6) M for Cd2+, 2.6 X 10(-5) M for Sr2+ and 7 X 10(-4) M for Ba2+. Exposure of the skinned fibre to relatively low Ni2+ concentrations (between 10(-6) and 10(-5) M) resulted in a transient force response accompanied by an irreversible change in the ability of the preparation to develop force. The Ba2+- and Cd2+-activation curves are considerably flatter than the corresponding curves for Ca2+ and Sr2+. An increase in Mg2+ concentration from 1 to 3 mM decreased the sensitivity of the contractile apparatus to Ba2+ by a factor of about 1.5 without affecting the maximum force response. The Ca2+-activation curve was modified in the presence of subthreshold concentrations of Ba2+ and the results indicate that Ba2+ could have both an activating and an inhibitory action on the Ca2+-activated force. A kinetic model which can quantitatively explain the results for activation of contraction by Ba2+ and Ca2+, is described.

Full text

PDF
75

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almers W., Palade P. T. Slow calcium and potassium currents across frog muscle membrane: measurements with a vaseline-gap technique. J Physiol. 1981 Mar;312:159–176. doi: 10.1113/jphysiol.1981.sp013622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashley C. C., Moisescu D. G. Effect of changing the composition of the bathing solutions upon the isometric tension-pCa relationship in bundles of crustacean myofibrils. J Physiol. 1977 Sep;270(3):627–652. doi: 10.1113/jphysiol.1977.sp011972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CALDWELL P. C., WALSTER G. STUDIES ON THE MICRO-INJECTION OF VARIOUS SUBSTANCES INTO CRAB MUSCLE FIBRES. J Physiol. 1963 Nov;169:353–372. doi: 10.1113/jphysiol.1963.sp007261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Caputo C. Nickel substitution for calcium and the time course of potassium contractures of single muscle fibres. J Muscle Res Cell Motil. 1981 Jun;2(2):167–182. doi: 10.1007/BF00711867. [DOI] [PubMed] [Google Scholar]
  5. Donaldson S. K., Kerrick W. G. Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned skeletal muscle fibers. J Gen Physiol. 1975 Oct;66(4):427–444. doi: 10.1085/jgp.66.4.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ebashi S., Endo M. Calcium ion and muscle contraction. Prog Biophys Mol Biol. 1968;18:123–183. doi: 10.1016/0079-6107(68)90023-0. [DOI] [PubMed] [Google Scholar]
  7. Ellis P. D., Strang P., Potter J. D. Cadmium-substituted skeletal troponin C. Cadmium-113 NMR spectroscopy and metal binding investigations. J Biol Chem. 1984 Aug 25;259(16):10348–10356. [PubMed] [Google Scholar]
  8. Fischman D. A., Swan R. C. Nickel substitution for calcium in excitation-contraction coupling of skeletal muscle. J Gen Physiol. 1967 Jul;50(6):1709–1728. doi: 10.1085/jgp.50.6.1709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Forsén S., Thulin E., Lilja H. 113Cd NMR in the study of calcium binding proteins: troponin C. FEBS Lett. 1979 Aug 1;104(1):123–126. doi: 10.1016/0014-5793(79)81097-2. [DOI] [PubMed] [Google Scholar]
  10. Frank G. B., Rohani F. Ba2+ ions block K+-induced contractures by antagonizing K+-induced membrane depolarization in frog skeletal muscle fibres. Can J Physiol Pharmacol. 1982 Jan;60(1):47–51. doi: 10.1139/y82-006. [DOI] [PubMed] [Google Scholar]
  11. Julian F. J. The effect of calcium on the force-velocity relation of briefly glycerinated frog muscle fibres. J Physiol. 1971 Oct;218(1):117–145. doi: 10.1113/jphysiol.1971.sp009607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Matsumura M., Mashima H. Contraction produced by intracellular injection of calcium, strontium, and barium in the single crayfish muscle fibers. Jpn J Physiol. 1976;26(2):145–157. doi: 10.2170/jjphysiol.26.145. [DOI] [PubMed] [Google Scholar]
  13. Moisescu D. G. Kinetics of reaction in calcium-activated skinned muscle fibres. Nature. 1976 Aug 12;262(5569):610–613. doi: 10.1038/262610a0. [DOI] [PubMed] [Google Scholar]
  14. Moisescu D. G., Thieleczek R. Calcium and strontium concentration changes within skinned muscle preparations following a change in the external bathing solution. J Physiol. 1978 Feb;275:241–262. doi: 10.1113/jphysiol.1978.sp012188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moisescu D. G., Thieleczek R. Sarcomere length effects on the Sr2+- and Ca2+-activation curves in skinned frog muscle fibres. Biochim Biophys Acta. 1979 Apr 11;546(1):64–76. doi: 10.1016/0005-2728(79)90170-1. [DOI] [PubMed] [Google Scholar]
  16. Potreau D., Raymond G. Slow inward barium current and contraction on frog single muscle fibres. J Physiol. 1980 Jun;303:91–109. doi: 10.1113/jphysiol.1980.sp013273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Saks V. A., Rosenshtraukh L. V., Smirnov V. N., Chazov E. I. Role of creatine phosphokinase in cellular function and metabolism. Can J Physiol Pharmacol. 1978 Oct;56(5):691–706. doi: 10.1139/y78-113. [DOI] [PubMed] [Google Scholar]
  18. Stephenson D. G., Williams D. A. Calcium-activated force responses in fast- and slow-twitch skinned muscle fibres of the rat at different temperatures. J Physiol. 1981 Aug;317:281–302. doi: 10.1113/jphysiol.1981.sp013825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stephenson D. G., Williams D. A. Effects of sarcomere length on the force-pCa relation in fast- and slow-twitch skinned muscle fibres from the rat. J Physiol. 1982 Dec;333:637–653. doi: 10.1113/jphysiol.1982.sp014473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stephenson E. W., Podolsky R. J. Influence of magnesium on chloride-induced calcium release in skinned muscle fibers. J Gen Physiol. 1977 Jan;69(1):17–35. doi: 10.1085/jgp.69.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stephenson E. W., Podolsky R. J. Regulation by magnesium of intracellular calcium movement in skinned muscle fibers. J Gen Physiol. 1977 Jan;69(1):1–16. doi: 10.1085/jgp.69.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wallimann T., Turner D. C., Eppenberger H. M. Localization of creatine kinase isoenzymes in myofibrils. I. Chicken skeletal muscle. J Cell Biol. 1977 Nov;75(2 Pt 1):297–317. doi: 10.1083/jcb.75.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES