Abstract
The hypothesis that the circular muscle of the canine proximal colon receives motor input from neurones in the submucous plexus was tested. Circular muscle cells were impaled with micro-electrodes and submucous plexus neurones were stimulated by electrical field stimulation and microejection of acetylcholine (ACh). In the presence of atropine to block the direct muscarinic effects, microejection of ACh onto the submucosa where intact submucous ganglia were suspended evoked: (i) an inhibitory junction potential (i.j.p.) that reduced the amplitude, duration and rate of rise of the subsequent slow wave; (ii) a slow wave of increased duration following the initial inhibitory response. These responses were enhanced by increasing the volume of ACh administered. Responses to ACh were blocked by hexamethonium, 10(-4) M; d-tubocurarine, 10(-4) M; or tetrodotoxin (TTX), 10(-6) M, suggesting they were neural in origin. Both inhibitory and excitatory responses were the result of non-cholinergic and non-adrenergic nerves. The transmitters mediating these effects are unknown. Removal of the longitudinal muscle, myenteric plexus, and the serosal portion of the circular muscle had no apparent effect on the responses to application of ACh to submucosal ganglia. In these preparations the responses to field stimulation were identical to those produced by ACh. The submucous plexus also provides cholinergic input to the circular muscle. When ACh was discretely applied to the submucosa cholinergic responses were elicited at the muscle cell which were significantly reduced by hexamethonium or TTX. These findings suggest that the cholinergic responses were the result of ACh release by neurones at the effector and not by overflow of the exogenous ACh. Cholinergic responses were also elicited in preparations in which the myenteric plexus had been removed. Slow waves in circular muscle of the proximal colon yield excitation-contraction coupling in the absence of Ca2+ action potentials. Therefore the influence of submucous neurones on electrical slow waves has direct consequences on motor activity. Reduction in the amplitude and duration of slow wave by i.j.p.s. results in reduction in the amplitude and duration of phasic contractions. Excitatory inputs enhance contractions. The data support a new concept: motoneurones emanating from submucous ganglia innervate the circular muscle and provide inhibitory and excitatory inputs to regulate slow wave activity.(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDF

















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BULBRING E., LIN R. C., SCHOFIELD G. An investigation of the peristaltic reflex in relation to anatomical observations. Q J Exp Physiol Cogn Med Sci. 1958 Jan;43(1):26–37. doi: 10.1113/expphysiol.1958.sp001305. [DOI] [PubMed] [Google Scholar]
- Bayliss W. M., Starling E. H. The movements and innervation of the small intestine. J Physiol. 1899 May 11;24(2):99–143. doi: 10.1113/jphysiol.1899.sp000752. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bayliss W. M., Starling E. H. The movements and the innervation of the large intestine. J Physiol. 1900 Dec 31;26(1-2):107–118. doi: 10.1113/jphysiol.1900.sp000825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bortoff A. Electrical transmission of slow waves from longitudinal to circular intestinal muscle. Am J Physiol. 1965 Dec;209(6):1254–1260. doi: 10.1152/ajplegacy.1965.209.6.1254. [DOI] [PubMed] [Google Scholar]
- Bywater R. A., Holman M. E., Taylor G. S. Atropine-resistant depolarization in the guinea-pig small intestine. J Physiol. 1981 Jul;316:369–378. doi: 10.1113/jphysiol.1981.sp013794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caprilli R., Onori L. Origin, transmission and ionic dependence of colonic electrical slow waves. Scand J Gastroenterol. 1972;7(1):65–74. doi: 10.3109/00365527209180740. [DOI] [PubMed] [Google Scholar]
- Carey H. V., Cooke H. J., Zafirova M. Mucosal responses evoked by stimulation of ganglion cell somas in the submucosal plexus of the guinea-pig ileum. J Physiol. 1985 Jul;364:69–79. doi: 10.1113/jphysiol.1985.sp015730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christensen J., Caprilli R., Lund G. F. Electric slow waves in circular muscle of cat colon. Am J Physiol. 1969 Sep;217(3):771–776. doi: 10.1152/ajplegacy.1969.217.3.771. [DOI] [PubMed] [Google Scholar]
- Connor J. A., Kreulen D., Prosser C. L., Weigel R. Interaction between longitudinal and circular muscle in intestine of cat. J Physiol. 1977 Dec;273(3):665–689. doi: 10.1113/jphysiol.1977.sp012116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connor J. A., Prosser C. L., Weems W. A. A study of pace-maker activity in intestinal smooth muscle. J Physiol. 1974 Aug;240(3):671–701. doi: 10.1113/jphysiol.1974.sp010629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Costa M., Furness J. B. The peristaltic reflex: an analysis of the nerve pathways and their pharmacology. Naunyn Schmiedebergs Arch Pharmacol. 1976 Jul;294(1):47–60. doi: 10.1007/BF00692784. [DOI] [PubMed] [Google Scholar]
- Durdle N. G., Kingma Y. J., Bowes K. L., Chambers M. M. Origin of slow waves in the canine colon. Gastroenterology. 1983 Feb;84(2):375–382. [PubMed] [Google Scholar]
- El-Sharkawy T. Y. Electrical activities of the muscle layers of the canine colon. J Physiol. 1983 Sep;342:67–83. doi: 10.1113/jphysiol.1983.sp014840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frigo G. M., Lecchini S. An improved method for studying the peristaltic reflex in the isolated colon. Br J Pharmacol. 1970 Jun;39(2):346–356. doi: 10.1111/j.1476-5381.1970.tb12898.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furness J. B. An electrophysiological study of the innervation of the smooth muscle of the colon. J Physiol. 1969 Dec;205(3):549–562. doi: 10.1113/jphysiol.1969.sp008982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gabella G. Innervation of the intestinal muscular coat. J Neurocytol. 1972 Dec;1(4):341–362. doi: 10.1007/BF01102939. [DOI] [PubMed] [Google Scholar]
- Gunn M. Histological and histochemical observations on the myenteric and submucous plexuses of mammals. J Anat. 1968 Jan;102(Pt 2):223–239. [PMC free article] [PubMed] [Google Scholar]
- HUKUHARA T., MIYAKE T. The intrinsic reflexes in the colon. Jpn J Physiol. 1959 Mar 25;9(1):49–55. doi: 10.2170/jjphysiol.9.49. [DOI] [PubMed] [Google Scholar]
- Hirst G. D., Holman M. E., McKirdy H. C. Two descending nerve pathways activated by distension of guinea-pig small intestine. J Physiol. 1975 Jan;244(1):113–127. doi: 10.1113/jphysiol.1975.sp010786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirst G. D., Holman M. E., Spence I. Two types of neurones in the myenteric plexus of duodenum in the guinea-pig. J Physiol. 1974 Jan;236(2):303–326. doi: 10.1113/jphysiol.1974.sp010436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirst G. D., McKirdy H. C. Synaptic potentials recorded from neurones of the submucous plexus of guinea-pig small intestine. J Physiol. 1975 Jul;249(2):369–385. doi: 10.1113/jphysiol.1975.sp011020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huizinga J. D., Diamant N. E., El-Sharkawy T. Y. Electrical basis of contractions in the muscle layers of the pig colon. Am J Physiol. 1983 Oct;245(4):G482–G491. doi: 10.1152/ajpgi.1983.245.4.G482. [DOI] [PubMed] [Google Scholar]
- Kobayashi M., Nagai T., Prosser C. L. Electrical interaction between muscle layers of cat intestine. Am J Physiol. 1966 Dec;211(6):1281–1291. doi: 10.1152/ajplegacy.1966.211.6.1281. [DOI] [PubMed] [Google Scholar]
- Langley J. N., Magnus R. Some observations of the movements of the intestine before and after degenerative section of the mesenteric nerves. J Physiol. 1905 Sep 8;33(1):34–51. doi: 10.1113/jphysiol.1905.sp001108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackenna B. R., McKirdy H. C. Peristalsis in the rabbit distal colon. J Physiol. 1972 Jan;220(1):33–54. doi: 10.1113/jphysiol.1972.sp009693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan K. G., Muir T. C., Szurszewski J. H. The electrical basis for contraction and relaxation in canine fundal smooth muscle. J Physiol. 1981 Feb;311:475–488. doi: 10.1113/jphysiol.1981.sp013599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan K. G., Schmalz P. F., Szurszewski J. H. The inhibitory effects of vasoactive intestinal polypeptide on the mechanical and electrical activity of canine antral smooth muscle. J Physiol. 1978 Sep;282:437–450. doi: 10.1113/jphysiol.1978.sp012474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NAKAYAMA S., NANBA R. Electrophysiological studies on the intestinal intrinsic reflex. Jpn J Physiol. 1961 Oct 15;11:499–505. doi: 10.2170/jjphysiol.11.499. [DOI] [PubMed] [Google Scholar]
- Nishi S., North R. A. Intracellular recording from the myenteric plexus of the guinea-pig ileum. J Physiol. 1973 Jun;231(3):471–491. doi: 10.1113/jphysiol.1973.sp010244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohkawa H., Prosser C. L. Functions of neurons in enteric plexuses of cat intestine. Am J Physiol. 1972 Jun;222(6):1420–1426. doi: 10.1152/ajplegacy.1972.222.6.1420. [DOI] [PubMed] [Google Scholar]
- Sanders K. M., Smith T. K. Enteric neural regulation of slow waves in circular muscle of the canine proximal colon. J Physiol. 1986 Aug;377:297–313. doi: 10.1113/jphysiol.1986.sp016188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarna S. K., Daniel E. E. Vagal control of gastric electrical control activity and motility. Gastroenterology. 1975 Feb;68(2):301–308. [PubMed] [Google Scholar]
- Sato T., Takayanagi I., Takagi K. Effects of acetylcholine releasing drugs on electrical activities obtained from Auerbach's plexus in the guinea pig ileum. Jpn J Pharmacol. 1974 Jun;24(3):447–451. doi: 10.1254/jjp.24.447. [DOI] [PubMed] [Google Scholar]
- Surprenant A. Slow excitatory synaptic potentials recorded from neurones of guinea-pig submucous plexus. J Physiol. 1984 Jun;351:343–361. doi: 10.1113/jphysiol.1984.sp015249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wood J. D. Electrical activity from single neurons in Auerbach's plexus. Am J Physiol. 1970 Jul;219(1):159–169. doi: 10.1152/ajplegacy.1970.219.1.159. [DOI] [PubMed] [Google Scholar]
