Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1986 Nov;380:521–539. doi: 10.1113/jphysiol.1986.sp016300

Electrical properties of axons and neurohypophysial nerve terminals and their relationship to secretion in the rat.

J J Nordmann, E L Stuenkel
PMCID: PMC1182952  PMID: 3612574

Abstract

Isolated rat pituitary stalk-neurohypophysial complexes were electrically stimulated and the evoked compound action potentials were recorded at the level of both axons and nerve terminals. The latency of the nerve terminal response increased during continuous stimulation of the stalk at frequencies as low as 1 Hz. At similar frequencies continuous stimulation of the stalk produced an increase in the latency of the response of the nerve fibres and a decrease in the amplitude of the compound action potential. The increase in the latency of the response of both axons and nerve terminals was related to the frequency and number of stimuli. The time necessary for full recovery of the response of the axons and the nerve endings, following stimulation at frequencies above 5 Hz, was not linearly related to the frequency of stimulation. Stimulation of the stalk with a pulse pattern (bursts) imitating the electrical activity of vasopressin-containing magnocellular neurones showed that the latency of the compound action potential had increased by the end of the first burst. The latency of the response of axons and nerve endings was inversely proportional to the time interval between bursts. Prolonged stimulation of the isolated neural lobe with 'vasopressin'-like bursts induced the release of vasopressin. Twelve bursts, separated by 3 min intervals, released more hormone than fifty bursts given during the same period of time, but separated by a 21 s interval. Leu-enkephalin (10(-5) M) did not modify the latency or the amplitude of the action potentials evoked with low frequency of stimulation (0.5 Hz) or with 'vasopressin'-like bursts. In conclusion, it is suggested that the electrical properties of the nerve fibres and the nerve endings goes some way to explain the pattern of hormone release observed during sustained stimulation.

Full text

PDF
521

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnauld E., Dufy B., Vincent J. D. Hypothalamic supraoptic neurones: rates and patterns of action potential firing during water deprivation in the unanaesthetized monkey. Brain Res. 1975 Dec 19;100(2):315–325. doi: 10.1016/0006-8993(75)90485-0. [DOI] [PubMed] [Google Scholar]
  2. BROWN G. L., HOLMES O. The effects of activity on mammalian nerve fibres of low conduction velocity. Proc R Soc Lond B Biol Sci. 1956 Mar 27;144(918):1–14. doi: 10.1098/rspb.1956.0013. [DOI] [PubMed] [Google Scholar]
  3. Baertschi A. J., Dreifuss J. J. The antidromic compound action potential of the hypothalamo-neurohypophysial tract, a tool for assessing posterior pituitary activity in vivo. Brain Res. 1979 Aug 10;171(3):437–451. doi: 10.1016/0006-8993(79)91048-5. [DOI] [PubMed] [Google Scholar]
  4. Bicknell R. J., Brown D., Chapman C., Hancock P. D., Leng G. Reversible fatigue of stimulus-secretion coupling in the rat neurohypophysis. J Physiol. 1984 Mar;348:601–613. doi: 10.1113/jphysiol.1984.sp015128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brimble M. J., Dyball R. E. Characterization of the responses of oxytocin- and vasopressin-secreting neurones in the supraoptic nucleus to osmotic stimulation. J Physiol. 1977 Sep;271(1):253–271. doi: 10.1113/jphysiol.1977.sp011999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cazalis M., Dayanithi G., Nordmann J. J. The role of patterned burst and interburst interval on the excitation-coupling mechanism in the isolated rat neural lobe. J Physiol. 1985 Dec;369:45–60. doi: 10.1113/jphysiol.1985.sp015887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DOUGLAS W. W., POISNER A. M. STIMULUS-SECRETION COUPLING IN A NEUROSECRETORY ORGAN: THE ROLE OF CALCIUM IN THE RELEASE OF VASOPRESSIN FROM THE NEUROHYPOPHYSIS. J Physiol. 1964 Jul;172:1–18. doi: 10.1113/jphysiol.1964.sp007399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Douglas W. W., Rubin R. P. The mechanism of catecholamine release from the adrenal medulla and the role of calcium in stimulus-secretion coupling. J Physiol. 1963 Jul;167(2):288–310. doi: 10.1113/jphysiol.1963.sp007150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dreifuss J. J., Harris M. C., Tribollet E. Excitation of phasically firing hypothalamic supraoptic neurones by carotid occlusion in rats. J Physiol. 1976 May;257(2):337–354. doi: 10.1113/jphysiol.1976.sp011372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dreifuss J. J., Kalnins I., Kelly J. S., Ruf K. B. Action potentials and release of neurohypophysial hormones in vitro. J Physiol. 1971 Jul;215(3):805–817. doi: 10.1113/jphysiol.1971.sp009499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dreifuss J. J., Kelly J. S. Recurrent inhibition of antidromically identified rat supraoptic neurones. J Physiol. 1972 Jan;220(1):87–103. doi: 10.1113/jphysiol.1972.sp009696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dutton A., Dyball R. E. Phasic firing enhances vasopressin release from the rat neurohypophysis. J Physiol. 1979 May;290(2):433–440. doi: 10.1113/jphysiol.1979.sp012781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leng G., Wiersma J. Effects of neural stalk stimulation on phasic discharge of supraoptic neurones in Brattleboro rats devoid of vasopressin. J Endocrinol. 1981 Aug;90(2):211–220. doi: 10.1677/joe.0.0900211. [DOI] [PubMed] [Google Scholar]
  14. Nordmann J. J., Dayanithi G., Cazalis M. Do opioid peptides modulate, at the level of the nerve endings, the release of neurohypophysial hormones? Exp Brain Res. 1986;61(3):560–566. doi: 10.1007/BF00237581. [DOI] [PubMed] [Google Scholar]
  15. Nordmann J. J., Dreifuss J. J. Hormone release evoked by electrical stimulation of rat neurohypophyses in the absence of action potentials. Brain Res. 1972 Oct 27;45(2):604–607. doi: 10.1016/0006-8993(72)90491-x. [DOI] [PubMed] [Google Scholar]
  16. Nordmann J. J. Stimulus-secretion coupling. Prog Brain Res. 1983;60:281–304. doi: 10.1016/S0079-6123(08)64397-6. [DOI] [PubMed] [Google Scholar]
  17. Nordmann J. J. Ultrastructural morphometry of the rat neurohypophysis. J Anat. 1977 Feb;123(Pt 1):213–218. [PMC free article] [PubMed] [Google Scholar]
  18. Pittman Q. J. Increases in antidromic latency of neurohypophyseal neurons during sustained activation. Neurosci Lett. 1983 Jun 30;37(3):239–243. doi: 10.1016/0304-3940(83)90437-8. [DOI] [PubMed] [Google Scholar]
  19. Poulain D. A., Wakerley J. B., Dyball R. E. Electrophysiological differentiation of oxytocin- and vasopressin-secreting neurones. Proc R Soc Lond B Biol Sci. 1977 Apr;196(1125):367–384. doi: 10.1098/rspb.1977.0046. [DOI] [PubMed] [Google Scholar]
  20. Poulain D. A., Wakerley J. B. Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neuroscience. 1982 Apr;7(4):773–808. doi: 10.1016/0306-4522(82)90044-6. [DOI] [PubMed] [Google Scholar]
  21. RITCHIE J. M., STRAUB R. W. The after-effects of repetitive stimulation on mammalian non-medullated fibres. J Physiol. 1956 Dec 28;134(3):698–711. doi: 10.1113/jphysiol.1956.sp005676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shaw F. D., Bicknell R. J., Dyball R. E. Facilitation of vasopressin release from the neurohypophysis by application of electrical stimuli in bursts. Relevant stimulation parameters. Neuroendocrinology. 1984 Oct;39(4):371–376. doi: 10.1159/000124007. [DOI] [PubMed] [Google Scholar]
  23. Wakerley J. B., Lincoln D. W. The milk-ejection reflex of the rat: a 20- to 40-fold acceleration in the firing of paraventricular neurones during oxytocin release. J Endocrinol. 1973 Jun;57(3):477–493. doi: 10.1677/joe.0.0570477. [DOI] [PubMed] [Google Scholar]
  24. Wakerley J. B., Poulain D. A., Brown D. Comparison of firing patterns in oxytocin- and vasopressin-releasing neurones during progressive dehydration. Brain Res. 1978 Jun 16;148(2):425–440. doi: 10.1016/0006-8993(78)90730-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES