Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1986 Dec;381:311–331. doi: 10.1113/jphysiol.1986.sp016329

Dissociation between force and intracellular sodium activity with strophanthidin in isolated sheep Purkinje fibres.

M R Boyett, G Hart, A J Levi
PMCID: PMC1182981  PMID: 2442352

Abstract

1. We have recorded membrane potential, intracellular Na activity (aiNa) and force of contraction in sheep Purkinje fibres. Force and aiNa were recorded continuously and simultaneously during exposure to strophanthidin and its subsequent washing off. 2. Exposure to strophanthidin in concentrations of 1.5 X 10(-7), 5 X 10(-7) and 10(-5) M caused an increase in force of contraction which was temporally dissociated from the increase of aiNa. 3. There was hysteresis in the relationship between force and aiNa when the period of increasing force was compared to the period of decreasing force. When force increased on exposure to strophanthidin, the same aiNa was always associated with a higher force than when force was decreasing while washing off the drug. 4. For the same rise of aiNa higher doses of strophanthidin produced larger rises of force than lower doses. 5. When diphenylhydantoin was present in the bathing solution at concentrations of 10(-5) and 10(-4) M, the relation between force and aiNa with 10(-5) M-strophanthidin had a less steep slope, but still displayed hysteresis. 6. The relationship between force and aiNa during changes of the bathing K concentration also displayed a hysteresis, which was in the same direction as that found with strophanthidin. 7. These results are discussed in relation to proposed mechanisms of action of strophanthidin and more generally in relation to the factors linking force of contraction and aiNa. We conclude that in sheep Purkinje fibres the increase of force caused by strophanthidin is not solely due to an increase of aiNa, and that other interventions can also result in hysteresis between force and aiNa.

Full text

PDF
311

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D. G., Blinks J. R. Calcium transients in aequorin-injected frog cardiac muscle. Nature. 1978 Jun 15;273(5663):509–513. doi: 10.1038/273509a0. [DOI] [PubMed] [Google Scholar]
  2. Baker P. F., Blaustein M. P., Hodgkin A. L., Steinhardt R. A. The influence of calcium on sodium efflux in squid axons. J Physiol. 1969 Feb;200(2):431–458. doi: 10.1113/jphysiol.1969.sp008702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohen I. S. Can blocking the Na/K exchange pump lead to a reduction in intracellular sodium? Experientia. 1983 Nov 15;39(11):1280–1282. doi: 10.1007/BF01990370. [DOI] [PubMed] [Google Scholar]
  4. Cohen I., Daut J., Noble D. An analysis of the actions of low concentrations of ouabain on membrane currents in Purkinje fibres. J Physiol. 1976 Aug;260(1):75–103. doi: 10.1113/jphysiol.1976.sp011505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deitmer J. W., Ellis D. Interactions between the regulation of the intracellular pH and sodium activity of sheep cardiac Purkinje fibres. J Physiol. 1980 Jul;304:471–488. doi: 10.1113/jphysiol.1980.sp013337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deitmer J. W., Ellis D. The intracellular sodium activity of cardiac Purkinje fibres during inhibition and re-activation of the Na-K pump. J Physiol. 1978 Nov;284:241–259. doi: 10.1113/jphysiol.1978.sp012539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eisner D. A., Lederer W. J., Vaughan-Jones R. D. The dependence of sodium pumping and tension on intracellular sodium activity in voltage-clamped sheep Purkinje fibres. J Physiol. 1981 Aug;317:163–187. doi: 10.1113/jphysiol.1981.sp013819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eisner D. A., Lederer W. J., Vaughan-Jones R. D. The effects of rubidium ions and membrane potentials on the intracellular sodium activity of sheep Purkinje fibres. J Physiol. 1981 Aug;317:189–205. doi: 10.1113/jphysiol.1981.sp013820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eisner D. A., Lederer W. J., Vaughan-Jones R. D. The quantitative relationship between twitch tension and intracellular sodium activity in sheep cardiac Purkinje fibres. J Physiol. 1984 Oct;355:251–266. doi: 10.1113/jphysiol.1984.sp015417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ellis D. Effects of stimulation and diphenylhydantoin on the intracellular sodium activity in Purkinje fibres of sheep heart. J Physiol. 1985 May;362:331–348. doi: 10.1113/jphysiol.1985.sp015681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ellis D., MacLeod K. T. Sodium-dependent control of intracellular pH in Purkinje fibres of sheep heart. J Physiol. 1985 Feb;359:81–105. doi: 10.1113/jphysiol.1985.sp015576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fabiato A., Fabiato F. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiace and skeletal muscles. J Physiol. 1978 Mar;276:233–255. doi: 10.1113/jphysiol.1978.sp012231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ghysel-Burton J., Godfraind T. Stimulation and inhibition of the sodium pump by cardioactive steroids in relation to their binding sites and their inotropic effect on guinea-pig isolated atria. Br J Pharmacol. 1979 Jun;66(2):175–184. doi: 10.1111/j.1476-5381.1979.tb13662.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gibbons W. R., Fozzard H. A. Relationships between voltage and tension in sheep cardiac Purkinje fibers. J Gen Physiol. 1975 Mar;65(3):345–365. doi: 10.1085/jgp.65.3.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Greenspan A. M., Morad M. Electromechanical studies on the inotropic effects of acetylstrophanthidin in ventricular muscle. J Physiol. 1975 Dec;253(2):357–384. doi: 10.1113/jphysiol.1975.sp011194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hart G., Noble D., Shimoni Y. The effects of low concentrations of cardiotonic steroids on membrane currents and tension in sheep Purkinje fibres. J Physiol. 1983 Jan;334:103–131. doi: 10.1113/jphysiol.1983.sp014483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Im W. B., Lee C. O. Quantitative relation of twitch and tonic tensions to intracellular Na+ activity in cardiac Purkinje fibers. Am J Physiol. 1984 Nov;247(5 Pt 1):C478–C487. doi: 10.1152/ajpcell.1984.247.5.C478. [DOI] [PubMed] [Google Scholar]
  18. Isenberg G. Contractility of isolated bovine ventricular myocytes is enhanced by intracellular injection of cardioactive glycosides. Evidence for an intracellular mode of action. Basic Res Cardiol. 1984;79 (Suppl):56–71. doi: 10.1007/978-3-642-72376-6_9. [DOI] [PubMed] [Google Scholar]
  19. Josephson I., Sperelakis N. Ouabain blockade of inward slow current in cardiac muscle. J Mol Cell Cardiol. 1977 May;9(5):409–418. doi: 10.1016/s0022-2828(77)80007-2. [DOI] [PubMed] [Google Scholar]
  20. Langer G. A., Serena S. D. Effects of strophanthidin upon contraction and ionic exchange in rabbit ventricular myocardium: relation to control of active state. J Mol Cell Cardiol. 1970 Mar;1(1):65–90. doi: 10.1016/0022-2828(70)90029-5. [DOI] [PubMed] [Google Scholar]
  21. Lederer W. J., Eisner D. A. The effects of sodium pump activity on the slow inward current in sheep cardiac Purkinje fibres. Proc R Soc Lond B Biol Sci. 1982 Jan 22;214(1195):249–262. doi: 10.1098/rspb.1982.0008. [DOI] [PubMed] [Google Scholar]
  22. Lederer W. J., Spindler A. J., Eisner D. A. Thick slurry bevelling: a new technique for bevelling extremely fine microelectrodes and micropipettes. Pflugers Arch. 1979 Sep;381(3):287–288. doi: 10.1007/BF00583261. [DOI] [PubMed] [Google Scholar]
  23. Lee C. O., Dagostino M. Effect of strophanthidin on intracellular Na ion activity and twitch tension of constantly driven canine cardiac Purkinje fibers. Biophys J. 1982 Dec;40(3):185–198. doi: 10.1016/S0006-3495(82)84474-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lee C. O., Kang D. H., Sokol J. H., Lee K. S. Relation between intracellular Na ion activity and tension of sheep cardiac Purkinje fibers exposed to dihydro-ouabain. Biophys J. 1980 Feb;29(2):315–330. doi: 10.1016/S0006-3495(80)85135-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Li T., Vassalle M. Sodium-calcium exchange in Purkinje fibers: electrical and mechanical effects. Basic Res Cardiol. 1983 Jul-Aug;78(4):396–414. doi: 10.1007/BF02070164. [DOI] [PubMed] [Google Scholar]
  26. Marban E., Rink T. J., Tsien R. W., Tsien R. Y. Free calcium in heart muscle at rest and during contraction measured with Ca2+ -sensitive microelectrodes. Nature. 1980 Aug 28;286(5776):845–850. doi: 10.1038/286845a0. [DOI] [PubMed] [Google Scholar]
  27. Marban E., Tsien R. W. Enhancement of calcium current during digitalis inotropy in mammalian heart: positive feed-back regulation by intracellular calcium? J Physiol. 1982 Aug;329:589–614. doi: 10.1113/jphysiol.1982.sp014321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Noble D. Mechanism of action of therapeutic levels of cardiac glycosides. Cardiovasc Res. 1980 Sep;14(9):495–514. doi: 10.1093/cvr/14.9.495. [DOI] [PubMed] [Google Scholar]
  29. Noble D. The surprising heart: a review of recent progress in cardiac electrophysiology. J Physiol. 1984 Aug;353:1–50. doi: 10.1113/jphysiol.1984.sp015320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Okita G. T. Dissociation of Na+,K+-ATPase inhibition from digitalis inotropy. Fed Proc. 1977 Aug;36(9):2225–2230. [PubMed] [Google Scholar]
  31. Reuter H., Seitz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol. 1968 Mar;195(2):451–470. doi: 10.1113/jphysiol.1968.sp008467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rosen M. R., Danilo P., Jr, Alonso M. B., Pippenger C. E. Effects of therapeutic concentrations of diphenylhydantoin on transmembrane potentials of normal and depressed Purkinje fibers. J Pharmacol Exp Ther. 1976 Jun;197(3):594–604. [PubMed] [Google Scholar]
  33. SCHATZMANN H. J. Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv Physiol Pharmacol Acta. 1953;11(4):346–354. [PubMed] [Google Scholar]
  34. Scheuer T., Kass R. S. Phenytoin reduces calcium current in the cardiac Purkinje fiber. Circ Res. 1983 Jul;53(1):16–23. doi: 10.1161/01.res.53.1.16. [DOI] [PubMed] [Google Scholar]
  35. Sheu S. S., Fozzard H. A. Transmembrane Na+ and Ca2+ electrochemical gradients in cardiac muscle and their relationship to force development. J Gen Physiol. 1982 Sep;80(3):325–351. doi: 10.1085/jgp.80.3.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tsien R. Y., Rink T. J. Neutral carrier ion-selective microelectrodes for measurement of intracellular free calcium. Biochim Biophys Acta. 1980 Jul;599(2):623–638. doi: 10.1016/0005-2736(80)90205-9. [DOI] [PubMed] [Google Scholar]
  37. Vassalle M., Lee C. O. The relationship among intracellular sodium activity, calcium, and strophanthidin inotropy in canine cardiac Purkinje fibers. J Gen Physiol. 1984 Feb;83(2):287–307. doi: 10.1085/jgp.83.2.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Vaughan-Jones R. D., Lederer W. J., Eisner D. A. Ca2+ ions can affect intracellular pH in mammalian cardiac muscle. Nature. 1983 Feb 10;301(5900):522–524. doi: 10.1038/301522a0. [DOI] [PubMed] [Google Scholar]
  39. Wasserstrom J. A., Schwartz D. J., Fozzard H. A. Relation between intracellular sodium and twitch tension in sheep cardiac Purkinje strands exposed to cardiac glycosides. Circ Res. 1983 Jun;52(6):697–705. doi: 10.1161/01.res.52.6.697. [DOI] [PubMed] [Google Scholar]
  40. Weingart R., Kass R. S., Tsien R. W. Is digitalis inotropy associated with enhanced slow inward calcium current? Nature. 1978 Jun 1;273(5661):389–392. doi: 10.1038/273389a0. [DOI] [PubMed] [Google Scholar]
  41. Wier W. G., Hess P. Excitation-contraction coupling in cardiac Purkinje fibers. Effects of cardiotonic steroids on the intracellular [Ca2+] transient, membrane potential, and contraction. J Gen Physiol. 1984 Mar;83(3):395–415. doi: 10.1085/jgp.83.3.395. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES