Abstract
1. The effects of urine flow rate and urinary pH on renal prostaglandin E2 (PGE2) and kallikrein excretion were investigated in conscious dogs during water deprivation followed by rehydration and under conditions which altered urine pH, but caused similar change in salt and water excretion. 2. When water-restricted dogs were rehydrated in two steps by gavage giving the animals tap water, urine flow increased by 22- and 63-fold with a concomitant increase in PGE2 excretion by 100 and 318%, respectively; whereas urinary kallikrein excretion and urine pH did not change significantly. 3. Oral administration of isotonic sodium chloride solution increased urine flow as well as electrolyte excretion without altering urine pH (6.90 +/- 0.26) and PGE2 excretion. 4. When urine was made alkaline (pH 7.79 +/- 0.09) by oral sodium bicarbonate, urine flow and electrolyte excretion were similar to those observed after oral sodium chloride, while renal PGE2 excretion increased by 66% (P less than 0.05). 5. When urine was made acidic (pH 5.31 +/- 0.14) by oral ammonium chloride, urine flow and electrolyte excretion were similar to the values seen after oral sodium chloride. Urinary PGE2 excretion, however, was reduced by 46% (P less than 0.05). 6. After oral fluid loads a positive correlation could be detected between urine pH and urinary PGE2 excretion (r = 0.854, P less than 0.001). 7. Urinary kallikrein excretion was not significantly altered by any of the three interventions mentioned above. 8. The present results suggest that, in conscious dogs, urine flow as well as urine pH are important determinants of urinary PGE2 excretion rates, but not of kallikrein excretion.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amundsen E., Putter J., Friberger P., Knos M., Larsbraten M., Claeson G. Methods for the determination of glandular kallikrein by means of a chromogenic tripeptide substrate. Adv Exp Med Biol. 1979;120A:83–95. doi: 10.1007/978-1-4757-0926-1_9. [DOI] [PubMed] [Google Scholar]
- Fejes-Tóth G., Filep J., Mann V. Effect of vasopressin on prostaglandin excretion in conscious dogs. J Physiol. 1983 Nov;344:389–397. doi: 10.1113/jphysiol.1983.sp014947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fejes-Tóth G., Náray-Fejes-Tóth A., Rigter B., Frölich J. C. Urinary prostaglandin and kallikrein excretion are not flow dependent in the rat. Prostaglandins. 1983 Jan;25(1):99–103. doi: 10.1016/0090-6980(83)90139-9. [DOI] [PubMed] [Google Scholar]
- Frölich J. C., Wilson T. W., Sweetman B. J., Smigel M., Nies A. S., Carr K., Watson J. T., Oates J. A. Urinary prostaglandins. Identification and origin. J Clin Invest. 1975 Apr;55(4):763–770. doi: 10.1172/JCI107987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haylor J., Lote C. J., Thewles A. The effect of sodium bicarbonate on the flow-dependency of urinary prostaglandin excretion in man. Clin Sci (Lond) 1986 Feb;70(2):141–145. doi: 10.1042/cs0700141. [DOI] [PubMed] [Google Scholar]
- Haylor J., Lote C. J., Thewles A. Urinary pH as a determinant of prostaglandin E2 excretion by the conscious rat. Clin Sci (Lond) 1984 Jun;66(6):675–681. doi: 10.1042/cs0660675. [DOI] [PubMed] [Google Scholar]
- Haylor J., Lote C. J. Urine pH and the relationship between urine flow and urinary prostaglandin E excretion in the rat. J Endocrinol. 1986 Feb;108(2):247–253. doi: 10.1677/joe.0.1080247. [DOI] [PubMed] [Google Scholar]
- Hial V., Keiser H. R., Pisano J. J. Origin and content of methionyl-lysyl-bradykinin, lysyl-bradykinin and bradykinin in human urine. Biochem Pharmacol. 1976 Nov 15;25(22):2499–2503. doi: 10.1016/0006-2952(76)90456-1. [DOI] [PubMed] [Google Scholar]
- Kaye Z., Zipser R., Hahn J., Zia P., Horton R. Is urinary flow rate a major regulator of prostaglandin E excretion in man? Prostaglandins Med. 1980 May;4(5):303–309. doi: 10.1016/0161-4630(80)90003-8. [DOI] [PubMed] [Google Scholar]
- Kirschenbaum M. A., Serros E. R. Effects of alterations in urine flow rate on prostaglandin E excretion in conscious dogs. Am J Physiol. 1980 Feb;238(2):F107–F111. doi: 10.1152/ajprenal.1980.238.2.F107. [DOI] [PubMed] [Google Scholar]
- MILNE M. D., CRAWFORD M. A., GIRAO C. B., LOUGHRIDGE L. The excretion of indolylacetic acid and related indolic acids in man and the rat. Clin Sci. 1960 Feb;19:165–179. [PubMed] [Google Scholar]
- Margolius H. S., Horwitz D., Geller R. G., Alexander R. W., Gill J. R., Jr, Pisano J. J., Keiser H. R. Urinary kallikrein excretion in normal man. Relationships to sodium intake and sodium-retaining steroids. Circ Res. 1974 Dec;35(6):812–819. doi: 10.1161/01.res.35.6.812. [DOI] [PubMed] [Google Scholar]
- Margolius H. S. The kallikrein-kinin system and the kidney. Annu Rev Physiol. 1984;46:309–326. doi: 10.1146/annurev.ph.46.030184.001521. [DOI] [PubMed] [Google Scholar]
- Scicli A. G., Diaz M. A., Carretero O. A. Effect of pH and amiloride on the intrarenal formation of kinins. Am J Physiol. 1983 Aug;245(2):F198–F203. doi: 10.1152/ajprenal.1983.245.2.F198. [DOI] [PubMed] [Google Scholar]
- Walker R. M., Brown R. S., Stoff J. S. Role of renal prostaglandins during antidiuresis and water diuresis in man. Kidney Int. 1982 Feb;21(2):365–370. doi: 10.1038/ki.1982.31. [DOI] [PubMed] [Google Scholar]
- Wright L. F., Rosenblatt S. G., Lifschitz M. D. High urine flow rate increase prostaglandin E excretion in the conscious dog. Prostaglandins. 1981 Jul;22(1):21–34. doi: 10.1016/0090-6980(81)90051-4. [DOI] [PubMed] [Google Scholar]
- Zucker A., Nasjletti A., Schneider E. G. Effect of water deprivation on urinary excretion of PGE2 in the dog. Am J Physiol. 1983 Sep;245(3):R329–R333. doi: 10.1152/ajpregu.1983.245.3.R329. [DOI] [PubMed] [Google Scholar]