Abstract
1. The activity of pump (p.) cells, second-order neurones in the pulmonary stretch receptor pathway, was recorded extracellularly in the nucleus of the tractus solitarius (n.t.s.) of the decerebrate cat. Their firing was proportional to changes in lung volume but unrelated to the centrally determined respiratory rhythm. A systematic search of the n.t.s. for the location of p. cells was made and an assessment of their efferent projection to the contralateral n.t.s. was determined electrophysiologically by the antidromic mapping technique. 2. P. cells were located around, and in close proximity to, the solitary tract. The two sites of greatest density were ventromedial and dorsolateral to the tract, with lower concentrations found laterally and ventrolaterally. 3. For twelve of the thirty p. cells tested, evidence of a projection to the contralateral n.t.s. was obtained; in seven of these cells, axonal arborizations within the projection area were identified. Almost all the cells that sent axons to the contralateral n.t.s. were located dorsolateral to the tract; there was no evidence that cells in the ventromedial region had contralateral projections. 4. No evidence that R beta neurones project to the contralateral commissural and ventrolateral subnuclei was found. 5. No p. cells projected to the contralateral ventrolateral n.t.s. The site of projection and branching was consistently localized just caudal to the obex and medial to the solitary tract, in the caudal medial, and commissural subnuclei of the n.t.s. This same region has been shown to receive a dense, direct projection from pulmonary rapidly adapting receptors.
Full text
PDF














Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agostoni E., Citterio G., Piccoli S. Reflex partitioning of inputs from stretch receptors of bronchi and thoracic trachea. Respir Physiol. 1985 Jun;60(3):311–328. doi: 10.1016/0034-5687(85)90060-x. [DOI] [PubMed] [Google Scholar]
- Averill D. B., Cameron W. E., Berger A. J. Monosynaptic excitation of dorsal medullary respiratory neurons by slowly adapting pulmonary stretch receptors. J Neurophysiol. 1984 Oct;52(4):771–785. doi: 10.1152/jn.1984.52.4.771. [DOI] [PubMed] [Google Scholar]
- Backman S. B., Anders C., Ballantyne D., Röhrig N., Camerer H., Mifflin S., Jordan D., Dickhaus H., Spyer K. M., Richter D. W. Evidence for a monosynaptic connection between slowly adapting pulmonary stretch receptor afferents and inspiratory beta neurones. Pflugers Arch. 1984 Oct;402(2):129–136. doi: 10.1007/BF00583324. [DOI] [PubMed] [Google Scholar]
- Berger A. J., Averill D. B. Projection of single pulmonary stretch receptors to solitary tract region. J Neurophysiol. 1983 Mar;49(3):819–830. doi: 10.1152/jn.1983.49.3.819. [DOI] [PubMed] [Google Scholar]
- Berger A. J. Dorsal respiratory group neurons in the medulla of cat: spinal projections, responses to lung inflation and superior laryngeal nerve stimulation. Brain Res. 1977 Oct 28;135(2):231–254. doi: 10.1016/0006-8993(77)91028-9. [DOI] [PubMed] [Google Scholar]
- Cohen M. I., Feldman J. L. Discharge properties of dorsal medullary inspiratory neurons: relation to pulmonary afferent and phrenic efferent discharge. J Neurophysiol. 1984 Apr;51(4):753–776. doi: 10.1152/jn.1984.51.4.753. [DOI] [PubMed] [Google Scholar]
- Cohen M. I., Feldman J. L. Models of respiratory phase-switching. Fed Proc. 1977 Sep;36(10):2367–2374. [PubMed] [Google Scholar]
- Cohen M. I. Neurogenesis of respiratory rhythm in the mammal. Physiol Rev. 1979 Oct;59(4):1105–1173. doi: 10.1152/physrev.1979.59.4.1105. [DOI] [PubMed] [Google Scholar]
- Davies R. O., Kubin L. Projection of pulmonary rapidly adapting receptors to the medulla of the cat: an antidromic mapping study. J Physiol. 1986 Apr;373:63–86. doi: 10.1113/jphysiol.1986.sp016035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DiMarco A. F., von Euler C., Romaniuk J. R., Yamamoto Y. Positive feedback facilitation of external intercostal and phrenic inspiratory activity by pulmonary stretch receptors. Acta Physiol Scand. 1981;113(3):375–386. doi: 10.1111/j.1748-1716.1981.tb06910.x. [DOI] [PubMed] [Google Scholar]
- Donoghue S., Garcia M., Jordan D., Spyer K. M. The brain-stem projections of pulmonary stretch afferent neurones in cats and rabbits. J Physiol. 1982 Jan;322:353–363. doi: 10.1113/jphysiol.1982.sp014041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fussey I. F., Kidd C., Whitwam J. G. The differentiation of axonal and soma-dendritic spike activity. Pflugers Arch. 1970;321(4):283–292. doi: 10.1007/BF00588643. [DOI] [PubMed] [Google Scholar]
- Kalia M., Mesulam M. M. Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J Comp Neurol. 1980 Sep 15;193(2):467–508. doi: 10.1002/cne.901930211. [DOI] [PubMed] [Google Scholar]
- Kalia M. Neuroanatomical organization of the respiratory centers. Fed Proc. 1977 Sep;36(10):2405–2411. [PubMed] [Google Scholar]
- Kalia M., Richter D. Morphology of physiologically identified slowly adapting lung stretch receptor afferents stained with intra-axonal horseradish peroxidase in the nucleus of the tractus solitarius of the cat. I. A light microscopic analysis. J Comp Neurol. 1985 Nov 22;241(4):503–520. doi: 10.1002/cne.902410409. [DOI] [PubMed] [Google Scholar]
- Lipski J. Antidromic activation of neurones as an analytic tool in the study of the central nervous system. J Neurosci Methods. 1981 Jun;4(1):1–32. doi: 10.1016/0165-0270(81)90015-7. [DOI] [PubMed] [Google Scholar]
- Lloyd T. C., Jr, Cooper J. A. Failure of tracheal distension to inhibit breathing in anesthetized dogs. J Appl Physiol Respir Environ Exerc Physiol. 1980 May;48(5):794–798. doi: 10.1152/jappl.1980.48.5.794. [DOI] [PubMed] [Google Scholar]
- Loewy A. D., Burton H. Nuclei of the solitary tract: efferent projections to the lower brain stem and spinal cord of the cat. J Comp Neurol. 1978 Sep 15;181(2):421–449. doi: 10.1002/cne.901810211. [DOI] [PubMed] [Google Scholar]
- Marino P. L., Davies R. O., Pack A. I. The responses of I beta cells to increases in the rate of lung inflation. Brain Res. 1981 Aug 31;219(2):289–305. doi: 10.1016/0006-8993(81)90292-4. [DOI] [PubMed] [Google Scholar]
- Merrill E. G., Ainsworth A. Glass-coated platinum-plated tungsten microelectrodes. Med Biol Eng. 1972 Sep;10(5):662–672. doi: 10.1007/BF02476084. [DOI] [PubMed] [Google Scholar]
- Paintal A. S. Vagal sensory receptors and their reflex effects. Physiol Rev. 1973 Jan;53(1):159–227. doi: 10.1152/physrev.1973.53.1.159. [DOI] [PubMed] [Google Scholar]
- Pantaleo T., Corda M. Respiration-related neurons in the medial nuclear complex of the solitary tract of the cat. Respir Physiol. 1986 May;64(2):135–148. doi: 10.1016/0034-5687(86)90037-x. [DOI] [PubMed] [Google Scholar]
- Richter D. W. Generation and maintenance of the respiratory rhythm. J Exp Biol. 1982 Oct;100:93–107. doi: 10.1242/jeb.100.1.93. [DOI] [PubMed] [Google Scholar]
- WIDDICOMBE J. G. Receptors in the trachea and bronchi of the cat. J Physiol. 1954 Jan;123(1):71–104. doi: 10.1113/jphysiol.1954.sp005034. [DOI] [PMC free article] [PubMed] [Google Scholar]
