Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Dec 1;167(3):531–534. doi: 10.1042/bj1670531

Mixed-valence cytochrome oxidase-formate complex. A steady-state intermediate.

T Brittain, C Greenwood, A Johnson
PMCID: PMC1183699  PMID: 203268

Abstract

At neutral pH, formate binds to the haem a3 component of cytochrome c oxidase to give a complex that reacts differently from the non-liganded enzyme with reducing agents. Addition of sodium dithionite to the formate complex leads directly to the formation of the fully reduced species, whereas reduction with ascorbate/tetramethylenephenylene-diamine can lead to the production of a mixed-valence species. The stability of this mixed-valence form was studied, and the species appears to represent a 'steady-state' situation that is stable only in the presence of an excess of O2 and reducing equivalents. Characterization of the mixed-valence complex by electron paramagnetic resonance and magnetic circular dichroism reveals the presence of reduced low-spin haem a together with reduced detectable copper and high-spin ferric haem a3.

Full text

PDF
531

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babcock G. T., Vickery L. E., Palmer G. Electronic state of heme in cytochrome oxidase. I. Magnetic circular dichroism of the isolated enzyme and its derivatives. J Biol Chem. 1976 Dec 25;251(24):7907–7919. [PubMed] [Google Scholar]
  2. Greenwood C., Brittain T. Studies on partially reduced mammalian cytochrome oxidase reactions with ferrocytochrome c. Biochem J. 1976 Sep 1;157(3):591–598. doi: 10.1042/bj1570591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Greenwood C., Wilson M. T., Brunori M. Studies on partially reduced mammalian cytochrome oxidase. Reactions with carbon monoxide and oxygen. Biochem J. 1974 Feb;137(2):205–215. doi: 10.1042/bj1370205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Nicholls P. Formate as an inhibitor of cytochrome c oxidase. Biochem Biophys Res Commun. 1975 Nov 17;67(2):610–616. doi: 10.1016/0006-291x(75)90856-6. [DOI] [PubMed] [Google Scholar]
  5. Nicholls P., Petersen L. C. Haem-haem interactions in cytochrome aa3 during the anaerobic-aerobic transition. Biochim Biophys Acta. 1974 Sep 20;357(3):462–467. doi: 10.1016/0005-2728(74)90038-3. [DOI] [PubMed] [Google Scholar]
  6. Nicholls P. The effect of formate on cytochrome aa3 and on electron transport in the intact respiratory chain. Biochim Biophys Acta. 1976 Apr 9;430(1):13–29. doi: 10.1016/0005-2728(76)90218-8. [DOI] [PubMed] [Google Scholar]
  7. Thomson A. J., Brittain T., Greenwood C., Springall J. P. Variable-temperature magnetic-circular-dichroism spectra of cytochrome c oxidase and its derivatives. Biochem J. 1977 Aug 1;165(2):327–336. doi: 10.1042/bj1650327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Thomson A. J., Brittain T., Greenwood C., Springall J. Determination of the heme spin states in cytochrome c oxidase using magnetic circular dichroism. FEBS Lett. 1976 Aug 1;67(1):94–98. doi: 10.1016/0014-5793(76)80877-0. [DOI] [PubMed] [Google Scholar]
  9. Wilson D. F., Erecińska M., Owen C. S. Some properties of the redox components of cytochrome c oxidase and their interactions. Arch Biochem Biophys. 1976 Jul;175(1):160–172. doi: 10.1016/0003-9861(76)90495-1. [DOI] [PubMed] [Google Scholar]
  10. YONETANI T. Studies on cytochrome oxidase. I. Absolute and difference absorption spectra. J Biol Chem. 1960 Mar;235:845–852. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES