Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Dec 1;167(3):601–610. doi: 10.1042/bj1670601

The deoxyribonucleic acid polymerases from the diatom Cylindrotheca fusiformis. Partial purification and characterization of four distinct activities.

T W Okita, B E Volcani
PMCID: PMC1183706  PMID: 603623

Abstract

Four extramitochondrial DNA polymerases from the marine photosynthetic diatom Cylindrotheca fusiformis were isolated and purified more than 1200-fold by chromatography on DNA-cellulose and DEAE-Sephadex. The enzymes were equally susceptible to inhibition by the thiol-blocking agents N-ethylmaleimide and p-chloromercuribenzoate, the zinc chelator o-phenathroline, and the nucleic acid interchelators ethidium bromide and acriflavin; they displayed similar pH optima, preferred activated DNA, and had strict dependence on high K+ for maximum activity. They were differentiated on the basis of their kinetic parameters, template-primer utilization and salt requirements. The four activities varied with growth stage of C. fusiformis. Activities of polymerases A and D doubled in exponential-phase cells as compared with those in stationary-phase cells, and the increase in polymerase B and chloroplast activity C was 20-40%. The relationship of the diatom polymerases to the complements in other organisms is discussed.

Full text

PDF
601

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames G. F. Resolution of bacterial proteins by polyacrylamide gel electrophoresis on slabs. Membrane, soluble, and periplasmic fractions. J Biol Chem. 1974 Jan 25;249(2):634–644. [PubMed] [Google Scholar]
  2. Azam F., Hemmingsen B. B., Volcani B. E. Role of silicon in diatom metabolism. V. Silicic acid transport and metabolism in the heterotrophic diatom Nitzschia alba. Arch Microbiol. 1974 Apr 19;97(2):103–114. doi: 10.1007/BF00403050. [DOI] [PubMed] [Google Scholar]
  3. Banks G. R., Holloman W. K., Kairis M. V., Spanos A., Yarranton G. T. A DNA polymerase from Ustilago maydis. 1. Purification and properties of the polymerase activity. Eur J Biochem. 1976 Feb 2;62(1):131–142. doi: 10.1111/j.1432-1033.1976.tb10106.x. [DOI] [PubMed] [Google Scholar]
  4. Chang L. M., Bollum F. J. Variation of deoxyribonucleic acid polymerase activities during rat liver regeneration. J Biol Chem. 1972 Dec 25;247(24):7948–7950. [PubMed] [Google Scholar]
  5. Chang L. M., Brown M., Bollum F. J. Induction of DNA polymerase in mouse L cells. J Mol Biol. 1973 Feb 15;74(1):1–8. doi: 10.1016/0022-2836(73)90349-5. [DOI] [PubMed] [Google Scholar]
  6. Darley W. M., Volcani B. E. Role of silicon in diatom metabolism. A silicon requirement for deoxyribonucleic acid synthesis in the diatom Cylindrotheca fusiformis Reimann and Lewin. Exp Cell Res. 1969 Dec;58(2):334–342. doi: 10.1016/0014-4827(69)90514-x. [DOI] [PubMed] [Google Scholar]
  7. Geider K., Kornberg A. Conversion of the M13 viral single strand to the double-stranded replicative forms by purified proteins. J Biol Chem. 1974 Jul 10;249(13):3999–4005. [PubMed] [Google Scholar]
  8. Goldring E. S., Grossman L. I., Krupnick D., Cryer D. R., Marmur J. The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J Mol Biol. 1970 Sep 14;52(2):323–335. doi: 10.1016/0022-2836(70)90033-1. [DOI] [PubMed] [Google Scholar]
  9. HOLT P. F., BOWCOTT J. E. The interaction of proteins with silicic acid. Biochem J. 1954 Jul;57(3):471–475. doi: 10.1042/bj0570471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Helfman W. B. The presence of an exonuclease in highly purified DNA polymerase from bakers' yeast. Eur J Biochem. 1973 Jan 3;32(1):42–50. doi: 10.1111/j.1432-1033.1973.tb02576.x. [DOI] [PubMed] [Google Scholar]
  11. Holmer A. M., Hesslewood I. P., Johnston I. R. The occurrence of multiple activities in the high-molecular-weight DNA polymerase fraction of mammalian tissues. A preliminary study of some of their properties. Eur J Biochem. 1974 Apr 16;43(3):487–499. doi: 10.1111/j.1432-1033.1974.tb03436.x. [DOI] [PubMed] [Google Scholar]
  12. Keller S. J., Biedenbach S. A., Meyer R. R. Partial purification of a chloroplast DNA polymerase from Euglena gracilis. Biochem Biophys Res Commun. 1973 Feb 5;50(3):620–628. doi: 10.1016/0006-291x(73)91289-8. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lehman I. R., Uyemura D. G. DNA polymerase I: essential replication enzyme. Science. 1976 Sep 10;193(4257):963–969. doi: 10.1126/science.781842. [DOI] [PubMed] [Google Scholar]
  16. Loeb L. A. Purification and properties of deoxyribonucleic acid polymerase from nuclei of sea urchin embryos. J Biol Chem. 1969 Apr 10;244(7):1672–1681. [PubMed] [Google Scholar]
  17. McLennan A. G., Keir H. M. DNA polymerases of Euglena gracilis: heterogeneity of molecular weight and subunit structure. Nucleic Acids Res. 1975 Feb;2(2):223–237. doi: 10.1093/nar/2.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McLennan A. G., Keir H. M. Deoxyribonucleic acid polymerases of Euglena gracilis. Primer-template utilization of and enzyme activities associated with the two deoxyribonucleic acid polymerases of high molecular weight. Biochem J. 1975 Nov;151(2):239–247. doi: 10.1042/bj1510239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McLennan A. G., Keir H. M. Deoxyribonucleic acid polymerases of Euglena gracilis. Purification and properties of two distinct deoxyribonucleic acid polymerases of high molecular weight. Biochem J. 1975 Nov;151(2):227–238. doi: 10.1042/bj1510227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Okita T. W., Volcani B. E. The deoxyribonucleic acid polymerases from the diatom Cylindrotheca fusiformis. Subcellular distribution, exonuclease activity and heterogeneity of the enzymes. Biochem J. 1977 Dec 1;167(3):611–619. doi: 10.1042/bj1670611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ross C. A., Harris W. J. Deoxyribonucleic acid polymerase from Chlamydomonas reinhardii. Biochem Soc Trans. 1976;4(4):806–807. doi: 10.1042/bst0040806. [DOI] [PubMed] [Google Scholar]
  22. Schultz L. D., Hall B. D. Transcription in yeast: alpha-amanitin sensitivity and other properties which distinguish between RNA polymerases I and III. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1029–1033. doi: 10.1073/pnas.73.4.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schwarz K. A bound form of silicon in glycosaminoglycans and polyuronides. Proc Natl Acad Sci U S A. 1973 May;70(5):1608–1612. doi: 10.1073/pnas.70.5.1608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Slater J. P., Mildvan A. S., Loeb L. A. Zinc in DNA polymerases. Biochem Biophys Res Commun. 1971 Jul 2;44(1):37–43. doi: 10.1016/s0006-291x(71)80155-9. [DOI] [PubMed] [Google Scholar]
  25. Sullivan C. W., Volcani B. E. Role of silicon in diatom metabolism. 3. The effects of silicic acid on DNA polymerase, TMP kinase and DNA synthesis in Cylindrotheca fusiformis. Biochim Biophys Acta. 1973 May 10;308(2):212–229. doi: 10.1016/0005-2787(73)90151-2. [DOI] [PubMed] [Google Scholar]
  26. Sullivan C. W., Volcani B. E. Role of silicon in diatom metabolism. VII. Silicic acid-stimulated DNA synthesis in toluene-permeabilized cells of Cylindrotheca fusiformis. Exp Cell Res. 1976 Mar 1;98(1):23–30. doi: 10.1016/0014-4827(76)90458-4. [DOI] [PubMed] [Google Scholar]
  27. Sung S. C. Effect of novobiocin on DNA-dependent DNA polymerases from developing rat brain. Biochim Biophys Acta. 1974 Aug 15;361(1):115–117. doi: 10.1016/0005-2787(74)90214-7. [DOI] [PubMed] [Google Scholar]
  28. Tait A., Cummings D. J. DNA-dependent DNA polymerase activities from Paramecia macronuclei. Biochim Biophys Acta. 1975 Jan 20;378(2):282–295. doi: 10.1016/0005-2787(75)90116-1. [DOI] [PubMed] [Google Scholar]
  29. Tait R. C., Harris A. L., Smith D. W. DNA repair in Escherichia coli mutants deficient in DNA polymerases I, II and-or 3. Proc Natl Acad Sci U S A. 1974 Mar;71(3):675–679. doi: 10.1073/pnas.71.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tait R. C., Smith D. W. Roles for E. coli DNA polymerases I, II, and 3 in DNA replication. Nature. 1974 May 10;249(453):116–119. doi: 10.1038/249116a0. [DOI] [PubMed] [Google Scholar]
  31. Weissbach A. Vertebrate DNA polymerases. Cell. 1975 Jun;5(2):101–108. doi: 10.1016/0092-8674(75)90017-3. [DOI] [PubMed] [Google Scholar]
  32. Wintersberger E. Deoxyribonucleic acid polymerases from yeast. Further purification and characterization of DNA-dependent DNA polymerases A and B. Eur J Biochem. 1974 Dec 16;50(1):41–47. doi: 10.1111/j.1432-1033.1974.tb03871.x. [DOI] [PubMed] [Google Scholar]
  33. Wintersberger U. Absence of a low-molecular-weight DNA polymerase from nuclei of the yeast, Saccharomyces cerevisiae. Eur J Biochem. 1974 Dec 16;50(1):197–202. doi: 10.1111/j.1432-1033.1974.tb03888.x. [DOI] [PubMed] [Google Scholar]
  34. Wintersberger U., Wintersberger E. Studies on deoxyribonucleic acid polymerases from yeast. 1. Parial purification and properties of two DNA polymerases from mitochondria-free cell extracts. Eur J Biochem. 1970 Mar 1;13(1):11–19. doi: 10.1111/j.1432-1033.1970.tb00893.x. [DOI] [PubMed] [Google Scholar]
  35. Yarranton G. T., Moore P. D., Spanos A. The influence of DNA binding protein on the substrate affinities of DNA polymerase from Ustilago maydis: one polymerase implicated in both DNA replication and repair. Mol Gen Genet. 1976 May 7;145(2):215–218. doi: 10.1007/BF00269596. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES