Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Dec 1;167(3):639–646. doi: 10.1042/bj1670639

The degradation of cartilage proteoglycans by tissue proteinases. Proteoglycan heterogeneity and the pathway of proteolytic degradation.

P J Roughley
PMCID: PMC1183710  PMID: 603626

Abstract

1. CaCl2-extracted proteoglycan from bovine nasal cartilage was degraded by four tissue proteinases till no further decrease in hydroynamic size was obtained. The proteoglycan and its final degradation products were then fractionated by Sepharose 2B chromatography. 2. The average size of the degradation products was least for cathepsin B and lysosomal elastase, and greatest for cathepsin D and cathepsin G. The latter two proteinases also produced degradation products that showed the widest range of sizes. 3. The structure of the degradation products ranged from peptides containing a single glycosaminoglycan chain to those containing twelve or more chains. Of the four proteinases, only cathepsin B produced peptides that contained a single chondroitin sulphate chain. 4. The proteoglycan was very heterogeneous with respect to size and chemical composition. Its behaviour on electrophoresis suggested that at least two genetically distinct core proteins might exist. 5. Irrespective of their structural variations, all proteoglycan molecules were able to interact with hyaluronic acid. In contrast, none of the degradation products were capable of this type of interaction. 6. A pathway for the proteolytic degradation of proteoglycans is postulated in which the sites of initial cleavage may be common to the majority of proteinases, whereas the production of the final clusters is dependent on the specificity of the proteinase. Only those proteinases of broadest specificity can produce single-chain chondroitin sulphate-peptides.

Full text

PDF
639

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANTONOPOULOS C. A., BORELIUS E., GARDELL S., HAMNSTROM B., SCOTT J. E. The precipitation of polyanions by long-chain aliphatic ammonium compounds. IV. Elution in salt solutions of mucopolysaccharide-quaternary ammonium complexes adsorbed on a support. Biochim Biophys Acta. 1961 Dec 9;54:213–226. doi: 10.1016/0006-3002(61)90360-2. [DOI] [PubMed] [Google Scholar]
  2. Hardingham T. E., Ewins R. J., Muir H. Cartilage proteoglycans. Structure and heterogeneity of the protein core and the effects of specific protein modifications on the binding to hyaluronate. Biochem J. 1976 Jul 1;157(1):127–143. doi: 10.1042/bj1570127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hascall V. C., Sajdera S. W. Proteinpolysaccharide complex from bovine nasal cartilage. The function of glycoprotein in the formation of aggregates. J Biol Chem. 1969 May 10;244(9):2384–2396. [PubMed] [Google Scholar]
  4. Heinegård D., Axelsson I. Distribution of keratan sulfate in cartilage proteoglycans. J Biol Chem. 1977 Mar 25;252(6):1971–1979. [PubMed] [Google Scholar]
  5. Heinegård D., Hascall V. C. Aggregation of cartilage proteoglycans. 3. Characteristics of the proteins isolated from trypsin digests of aggregates. J Biol Chem. 1974 Jul 10;249(13):4250–4256. [PubMed] [Google Scholar]
  6. Heinegård D., Hascall V. C. Characterization of chondroitin sulfate isolated from trypsin-chymotrypsin digests of cartilage proteoglycans. Arch Biochem Biophys. 1974 Nov;165(1):427–441. doi: 10.1016/0003-9861(74)90182-9. [DOI] [PubMed] [Google Scholar]
  7. Heinegård D. Polydispersity of cartilage proteoglycans. Structural variations with size and buoyant density of the molecules. J Biol Chem. 1977 Mar 25;252(6):1980–1989. [PubMed] [Google Scholar]
  8. Hoffman P., Mashburn T. A., Jr, Hsu D., Trivedi D., Diep J. Variable nature of cartilage proteoglycans. J Biol Chem. 1975 Sep 25;250(18):7251–7256. [PubMed] [Google Scholar]
  9. Hopwood J. J., Robinson H. C. Studies on the polydispersity and heterogeneity of cartilage proteoglycans. Identification of 3 proteoglycan structures in bovine nasal cartilage. Biochem J. 1975 Dec;151(3):581–594. doi: 10.1042/bj1510581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Keiser H., Greenwald R. A., Feinstein G., Janoff A. Degradation of cartilage proteoglycan by human leukocyte granule neutral proteases--a model of joint injury. II. Degradation of isolated bovine nasal cartilage proteoglycan. J Clin Invest. 1976 Mar;57(3):625–632. doi: 10.1172/JCI108318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mason R. M., Wusteman F. S. The glycosaminoglycans of human tracheobronchial cartilage. Biochem J. 1970 Dec;120(4):777–785. doi: 10.1042/bj1200777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mathews M. B., Glagov S. Acid mucopolysaccharide patterns in aging human cartilage. J Clin Invest. 1966 Jul;45(7):1103–1111. doi: 10.1172/JCI105416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McDevitt C. A., Muir H. Gel electrophoresis of proteoglycans and glycosaminoglycans on large-pore composite polyacrylamide-agarose gels. Anal Biochem. 1971 Dec;44(2):612–622. doi: 10.1016/0003-2697(71)90250-8. [DOI] [PubMed] [Google Scholar]
  14. Murata K., Bjelle A. O. Distribution of chondroitin sulfate in cartilage proteoglycans under associative conditions. J Biochem. 1976 Aug;80(2):203–208. doi: 10.1093/oxfordjournals.jbchem.a131265. [DOI] [PubMed] [Google Scholar]
  15. Pearson J. P., Mason R. M. The stability of bovine nasal cartilage proteoglycans during isolation and storage. Biochim Biophys Acta. 1977 Jun 23;498(1):176–188. doi: 10.1016/0304-4165(77)90098-8. [DOI] [PubMed] [Google Scholar]
  16. Rosenberg L., Wolfenstein-Todel C., Margolis R., Pal S., Strider W. Proteoglycans from bovine proximal humeral articular cartilage. Structural basis for the polydispersity of proteoglycan subunit. J Biol Chem. 1976 Oct 25;251(20):6439–6444. [PubMed] [Google Scholar]
  17. Roughley P. J., Barrett A. J. The degradation of cartilage proteoglycans by tissue proteinases. Proteoglycan structure and its susceptibility to proteolysis. Biochem J. 1977 Dec 1;167(3):629–637. doi: 10.1042/bj1670629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Roughley P. J. The degradation of proteoglycan by leucocyte elastase. Biochem Soc Trans. 1977;5(2):443–445. doi: 10.1042/bst0050443. [DOI] [PubMed] [Google Scholar]
  19. Seno N., Anno K., Yaegashi Y., Okuyama T. Microheterogeneity of chondroitin sulfates from various cartilages. Connect Tissue Res. 1975;3(1):87–96. doi: 10.3109/03008207509152345. [DOI] [PubMed] [Google Scholar]
  20. Stanescu V., Maroteaux P. Gel electrophoretic studies on proteoglycans and collagen of abnormal human growth cartilage: proteoglycan abnormalities in pseudoachondroplasia and in Kniest's disease. Pediatr Res. 1975 Oct;9(10):779–782. doi: 10.1203/00006450-197510000-00006. [DOI] [PubMed] [Google Scholar]
  21. Thyberg J., Lohmander S., Heinegård D. Proteoglycans of hyaline cartilage: Electron-microscopic studies on isolated molecules. Biochem J. 1975 Oct;151(1):157–166. doi: 10.1042/bj1510157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wasteson A. Properties of fractionated chondroitin sulphate from ox nasal septa. Biochem J. 1971 May;122(4):477–485. doi: 10.1042/bj1220477. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES