Abstract
The availability of homogeneous samples of the potassium salts of L- and D-octan-2-yl sulphate has enabled the separation of the optically stereospecific CS1 and CS2 secondary alkysulphohydrolases from extracts of cells of Comamonas terrigena. The CS2 enzyme was purified to homogeneity, and an initial study was made of its general properties, specificity, cellular localization and relationship to the CS1 enzyme. The CS2 enzyme has a molecular weight of approx. 250000 and a subunit size of approx. 58000, indicating that the molecule is a tetramer. Under the experimental conditions used the enzyme appears to be specific for (+)-secondary alkyl sulphate esters with the sulphate group at C-2 and with a chain length of at least six carbons. Enzyme activity towards racemic C-2 sulphates increases with increasing chain length up to C10, and there is some indirect evidence to suggest that activity declines when that chain length is exceeded. Other indirect evidence confirms that the CS1 enzyme exhibits similar specificity, except that only (-)-isomers can serve as substrates. Both enzymes are present in broth-grown stationary-phase cells of C. terrigena in approximately equal amounts.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bartholomew B., Dodgson K. S., Matcham G. W., Shaw D. J., White G. F. A novel mechanism of enzymic ester hydrolysis. Inversion of configuration and carbon-oxygen bond cleavage by secondary alkylsulphohydrolases from detergent-degrading micro-organisms. Biochem J. 1977 Sep 1;165(3):575–580. doi: 10.1042/bj1650575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DIXON M. A nomogram for ammonium sulphate solutions. Biochem J. 1953 Jun;54(3):457–458. doi: 10.1042/bj0540457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DODGSON K. S. Determination of inorganic sulphate in studies on the enzymic and non-enzymic hydrolysis of carbohydrate and other sulphate esters. Biochem J. 1961 Feb;78:312–319. doi: 10.1042/bj0780312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dodgson K. S., Fitzgerald J. W., Payne W. J. Chemically defined inducers of alkylsulphatases present in Pseudomonas C12B. Biochem J. 1974 Jan;138(1):53–62. doi: 10.1042/bj1380053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitzgerald J. W., Laslie W. W. Loss of primary alkylsulfatase and secondary alkylsulfatases (S-1 and S-2) from Pseudomonas C12B: effect of culture conditions, cell-washing procedures, and osmotic shock. Can J Microbiol. 1975 Jan;21(1):59–68. doi: 10.1139/m75-008. [DOI] [PubMed] [Google Scholar]
- Fitzgerald J. W. Secondary alkylsulphatases in a strain of Comamonas terrigena. Biochem J. 1975 Aug;149(2):477–480. doi: 10.1042/bj1490477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lijmbach G. W., Brinkhuis E. Microbial degradation of secondary n-alkyl sulfates and secondary alkanols. Antonie Van Leeuwenhoek. 1973;39(3):415–423. doi: 10.1007/BF02578884. [DOI] [PubMed] [Google Scholar]
- Matcham G. W., Dodgson K. S. Preparation and characterization of substrates suitable for the study of stereospecific secondary alkylsulphohydrolases of detergent-degrading micro-organisms. Biochem J. 1977 Dec 1;167(3):717–722. doi: 10.1042/bj1670717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer T. S., Lamberts B. L. Use of coomassie brilliant blue R250 for the electrophoresis of microgram quantities of parotid saliva proteins on acrylamide-gel strips. Biochim Biophys Acta. 1965 Aug 24;107(1):144–145. doi: 10.1016/0304-4165(65)90403-4. [DOI] [PubMed] [Google Scholar]
- Payne W. J., Fitzgerald J. W., Dodgson K. S. Methods for visualization of enzymes in polyacrylamide gels. Appl Microbiol. 1974 Jan;27(1):154–158. doi: 10.1128/am.27.1.154-158.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Payne W. J., Painter B. G. Resolution by acrylamide gel electrophoresis of alkyl sulphatases and alcohol dehydrogenase. Microbios. 1971 Apr;3(12):199–206. [PubMed] [Google Scholar]
- Thomas J. H., Tudball N. Studies on the enzymic degradation of L-serine O-sulphate by a rat liver preparation. Biochem J. 1967 Nov;105(2):467–472. doi: 10.1042/bj1050467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILLIAMS J., PAYNE W. J. ENZYMES INDUCED IN A BACTERIUM BY GROWTH ON SODIUM DODECYL SULFATE. Appl Microbiol. 1964 Jul;12:360–362. doi: 10.1128/am.12.4.360-362.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]