Abstract
1. The pathway of glutamate metabolism in non-synaptic rat brain mitochondria was investigated by measuring glutamate, aspartate and ammonia concentrations and oxygen uptakes in mitochondria metabolizing glutamate or glutamine under various conditions. 2. Brain mitochondria metabolizing 10mm-glutamate in the absence of malate produce aspartate at 15nmol/min per mg of protein, but no detectable ammonia. If amino-oxyacetate is added, the aspartate production is decreased by 80% and ammonia production is now observed at a rate of 6.3nmol/min per mg of protein. 3. Brain mitochondria metabolizing glutamate at various concentrations (0–10mm) in the presence of 2.5mm-malate produce aspartate at rates that are almost stoicheiometric with glutamate disappearance, with no detectable ammonia production. In the presence of amino-oxyacetate, although the rate of aspartate production is decreased by 75%, ammonia production is only just detectable (0.3nmol/min per mg of protein). 4. Brain mitochondria metabolizing 10mm-glutamine and 2.5mm-malate in States 3 and 4 were studied by using glutamine as a source of intramitochondrial glutamate without the involvement of mitochondrial translocases. The ammonia production due to the oxidative deamination of glutamate produced from the glutamine was estimated as 1nmol/min per mg of protein in State 3 and 3nmol/min per mg of protein in State 4. 5. Brain mitochondria metabolizing 10mm-glutamine in the presence of 1mm-amino-oxyacetate under State-3 conditions in the presence or absence of 2.5mm-malate showed no detectable aspartate production. In both cases, however, over the first 5min, ammonia production from the oxidative deamination of glutamate was 21–27nmol/min per mg of protein, but then decreased to approx. 1–1.5nmol/min per mg. 6. It is concluded that the oxidative deamination of glutamate by glutamate dehydrogenase is not a major route of metabolism of glutamate from either exogenous or endogenous (glutamine) sources in rat brain mitochondria.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Azzi A., Chappell J. B., Robinson B. H. Penetration of the mitochondrial membrane by glutamate and aspartate. Biochem Biophys Res Commun. 1967 Oct 11;29(1):148–152. doi: 10.1016/0006-291x(67)90556-6. [DOI] [PubMed] [Google Scholar]
- BALAZS R. CONTROL OF GLUTAMATE OXIDATION IN BRAIN AND LIVER MITOCHONDRIAL SYSTEMS. Biochem J. 1965 May;95:497–508. doi: 10.1042/bj0950497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BERL S., TAKAGAKI G., CLARKE D. D., WAELSCH H. Metabolic compartments in vivo. Ammonia and glutamic acid metabolism in brain and liver. J Biol Chem. 1962 Aug;237:2562–2569. [PubMed] [Google Scholar]
- BORST P. The pathway of glutamate oxidation by mitochondria isolated from different tissues. Biochim Biophys Acta. 1962 Feb 26;57:256–269. doi: 10.1016/0006-3002(62)91119-8. [DOI] [PubMed] [Google Scholar]
- Benjamin A. M., Quastel J. H. Fate of L-glutamate in the brain. J Neurochem. 1974 Sep;23(3):457–464. doi: 10.1111/j.1471-4159.1974.tb06046.x. [DOI] [PubMed] [Google Scholar]
- Blackburn E. H., Hird F. J. Metabolism of glutamine and glutamate by rat liver mitochondria. Arch Biochem Biophys. 1972 Sep;152(1):258–264. doi: 10.1016/0003-9861(72)90213-5. [DOI] [PubMed] [Google Scholar]
- Brand M. D., Chappell J. B. Glutamate and aspartate transport in rat brain mitochondria. Biochem J. 1974 May;140(2):205–210. doi: 10.1042/bj1400205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHANCE B., WILLIAMS G. R. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956;17:65–134. doi: 10.1002/9780470122624.ch2. [DOI] [PubMed] [Google Scholar]
- Clark J. B., Land J. M. Differential effects of 2-oxo acids on pyruvate utilization and fatty acid synthesis in rat brain. Biochem J. 1974 Apr;140(1):25–29. doi: 10.1042/bj1400025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark J. B., Nicklas W. J. The metabolism of rat brain mitochondria. Preparation and characterization. J Biol Chem. 1970 Sep 25;245(18):4724–4731. [PubMed] [Google Scholar]
- Crompton M., Chappell J. B. Transport of glutamine and glutamate in kidney mitochondria in relation to glutamine deamidation. Biochem J. 1973 Jan;132(1):35–46. doi: 10.1042/bj1320035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis E. J. On the nature of malonate-insensitive oxidation of pyruvate and glutamate by heart sarcosomes. Biochim Biophys Acta. 1968 Jul 16;162(1):1–10. doi: 10.1016/0005-2728(68)90208-9. [DOI] [PubMed] [Google Scholar]
- Dennis S. C., Lai J. C., Clark J. B. Comparative studies on glutamate metabolism in synpatic and non-synaptic rat brain mitochondria. Biochem J. 1977 Jun 15;164(3):727–736. doi: 10.1042/bj1640727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dennis S. C., Land J. M., Clark J. B. Glutamate metabolism and transport in rat brain mitochondria. Biochem J. 1976 May 15;156(2):323–331. doi: 10.1042/bj1560323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engel P. C., Dalziel K. The equilibrium constants of the glutamate dehydrogenase systems. Biochem J. 1967 Nov;105(2):691–695. doi: 10.1042/bj1050691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HASLAM R. J., KREBS H. A. THE METABOLISM OF GLUTAMATE IN HOMOGENATES AND SLICES OF BRAIN CORTEX. Biochem J. 1963 Sep;88:566–578. doi: 10.1042/bj0880566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HIRD F. J., MARGINSON M. A. FORMATION OF AMMONIA FROM GLUTAMATE BY MITOCHONDRIA. Nature. 1964 Mar 21;201:1224–1225. doi: 10.1038/2011224a0. [DOI] [PubMed] [Google Scholar]
- HOPPER S., SEGAL H. L. COMPARATIVE PROPERTIES OF GLUTAMIC-ALANINE TRANSAMINASE FROM SEVERAL SOURCES. Arch Biochem Biophys. 1964 Jun;105:501–505. doi: 10.1016/0003-9861(64)90042-6. [DOI] [PubMed] [Google Scholar]
- Hird F. J., Marginson M. A. The formation of ammonia from glutamine and glutamate by mitochondria from rat liver and kidney. Arch Biochem Biophys. 1968 Sep 20;127(1):718–724. doi: 10.1016/0003-9861(68)90282-8. [DOI] [PubMed] [Google Scholar]
- Hoek J. B., Ernster L., de Haan E. J., Tager J. M. The nicotinamide nucleotide specificity of glutamate dehydrogenase in intact rat-liver mitochondria. Biochim Biophys Acta. 1974 Mar 26;333(3):546–559. doi: 10.1016/0005-2728(74)90138-8. [DOI] [PubMed] [Google Scholar]
- KLINGENBERG M., PETTE D. Proportions of mitochondrial enzymes and pyridine nucleotides. Biochem Biophys Res Commun. 1962 Jun 4;7:430–432. doi: 10.1016/0006-291x(62)90329-7. [DOI] [PubMed] [Google Scholar]
- Katunuma N., Huzino A., Tomino I. Organ specific control of glutamine metabolism. Adv Enzyme Regul. 1967;5:55–69. doi: 10.1016/0065-2571(67)90008-8. [DOI] [PubMed] [Google Scholar]
- Kovacević Z. The pathway of glutamine and glutamate oxidation in isolated mitochondria from mammalian cells. Biochem J. 1971 Dec;125(3):757–763. doi: 10.1042/bj1250757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krebs H. A. Pyridine nucleotides and rate control. Symp Soc Exp Biol. 1973;27:299–318. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- McGivan J. D., Bradford N. M., Chappell J. B. Adaptive changes in the capacity of systems used for the synthesis of citrulline in rat liver mitochondria in response to high- and-low-protein diets. Biochem J. 1974 Aug;142(2):359–364. doi: 10.1042/bj1420359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGivan J. D., Chappell J. B. On the metabolic function of glutamate dehydrogenase in rat liver. FEBS Lett. 1975 Mar 15;52(1):1–7. doi: 10.1016/0014-5793(75)80624-7. [DOI] [PubMed] [Google Scholar]
- Meijer A. J., Van Dam K. The metabolic significance of anion transport in mitochondria. Biochim Biophys Acta. 1974 Dec 30;346(3-4):213–244. doi: 10.1016/0304-4173(74)90001-9. [DOI] [PubMed] [Google Scholar]
- Minn A., Gayet J., Delorme P. The penetration of the membrane of brain mitochondria by anions. J Neurochem. 1975 Jan;24(1):149–156. doi: 10.1111/j.1471-4159.1975.tb07641.x. [DOI] [PubMed] [Google Scholar]
- Park N. J., Fenton J. C. A simple method for the estimation of plasma ammonia using an ion specific electrode. J Clin Pathol. 1973 Oct;26(10):802–804. doi: 10.1136/jcp.26.10.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Preuss H. G., Weiss F. R. Rate-limiting factor in rat kidney slice ammoniagenesis. Am J Physiol. 1971 Aug;221(2):458–464. doi: 10.1152/ajplegacy.1971.221.2.458. [DOI] [PubMed] [Google Scholar]
- Weil-Malherbe H. Ammonia formation in brain slices. Mol Cell Biochem. 1974 Aug 1;4(1):31–44. doi: 10.1007/BF01731101. [DOI] [PubMed] [Google Scholar]