Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Jan 15;170(1):87–91. doi: 10.1042/bj1700087

Properties of energy-dependent calcium transport by rat liver microsomal fraction as revealed by initial-rate measurements.

F L Bygrave
PMCID: PMC1183864  PMID: 629785

Abstract

Measurements of the initial rate of Ca2+ transport by rat liver microsomal preparations reveal the existence of two phases of transport activity. The first, a phase of rapid transport, is complete by 3-5 min, at which time the second (slower) phase begins; this remains linear for up to at least 40 min. The initial phase is minimal in the absence of MgATP. The initial rate of Ca2+ transport reaches values as high as 25 nmol/min per mg of protein; the Km for Ca2+total is 1-2 micrometer and that for MgATPtotal about 500 micrometer. Ruthenium Red (3-5 nmol/mg of protein) has little effect on the initial rate of transport, whereas tributylin (2 micrometer) inhibits equally in a KC1- or a KNO3-containing medium. Compunds that collapse components of the proton electrochemical gradient in mitochondria (valinomycin and carbonyl cyanide m-chlorophenylhydrazone) each inhibit by 70-80% the initial rate of microsomal Ca2+ transport.

Full text

PDF
87

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALDRIDGE W. N. Adenosine triphosphatase in the microsomal fraction from rat brain. Biochem J. 1962 Jun;83:527–533. doi: 10.1042/bj0830527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ALDRIDGE W. N. The biochemistry of organotin compounds: trialkyltins and oxidative phosphorylation. Biochem J. 1958 Jul;69(3):367–376. doi: 10.1042/bj0690367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ash G. R., Bygrave F. L. Ruthenium red as a probe in assessing the potential of mitochondria to control intracellular calcium in liver. FEBS Lett. 1977 Jun 15;78(2):166–168. doi: 10.1016/0014-5793(77)80297-4. [DOI] [PubMed] [Google Scholar]
  4. Bruns D. E., McDonald J. M., Jarett L. Energy-dependent calcium transport in endoplasmic reticulum of adipocytes. J Biol Chem. 1976 Nov 25;251(22):7191–7197. [PubMed] [Google Scholar]
  5. Farber J. L., El-Mofty S. K., Schanne F. A., Aleo J. J., Jr, Serroni A. Intracellular calcium homeostasis in galactosamine-intoxicated rat liver cells. Active sequestration of calcium by microsomes and mitochondria. Arch Biochem Biophys. 1977 Jan 30;178(2):617–624. doi: 10.1016/0003-9861(77)90233-8. [DOI] [PubMed] [Google Scholar]
  6. Fitzpatrick D. F., Landon E. J., Debbas G., Hurwitz L. A calcium pump in vascular smooth muscle. Science. 1972 Apr 21;176(4032):305–306. doi: 10.1126/science.176.4032.305. [DOI] [PubMed] [Google Scholar]
  7. Mitchell P., Moyle J. Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria. Eur J Biochem. 1969 Feb;7(4):471–484. doi: 10.1111/j.1432-1033.1969.tb19633.x. [DOI] [PubMed] [Google Scholar]
  8. Moore L., Chen T., Knapp H. R., Jr, Landon E. J. Energy-dependent calcium sequestration activity in rat liver microsomes. J Biol Chem. 1975 Jun 25;250(12):4562–4568. [PubMed] [Google Scholar]
  9. Moore L., Hurwitz L., Davenport G. R., Landon E. J. Energy-dependent calcium uptake activity of microsomes from the aorta of normal and hypertensive rats. Biochim Biophys Acta. 1975 Dec 16;413(3):432–443. doi: 10.1016/0005-2736(75)90126-1. [DOI] [PubMed] [Google Scholar]
  10. Moore L., Rodman Davenport G., Landon E. J. Calcium uptake of a rat liver microsomal subcellular fraction in response to in vivo administration of carbon tetrachloride. J Biol Chem. 1976 Feb 25;251(4):1197–1201. [PubMed] [Google Scholar]
  11. Reed K. C., Bygrave F. L. The inhibition of mitochondrial calcium transport by lanthanides and ruthenium red. Biochem J. 1974 May;140(2):143–155. doi: 10.1042/bj1400143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Selwyn M. J., Dawson A. P., Stockdale M., Gains N. Chloride-hydroxide exchange across mitochondrial, erythrocyte and artificial lipid membranes mediated by trialkyl- and triphenyltin compounds. Eur J Biochem. 1970 May 1;14(1):120–126. doi: 10.1111/j.1432-1033.1970.tb00268.x. [DOI] [PubMed] [Google Scholar]
  13. Watson E. L., Siegel I. A. Effects of autonomic agents and cyclic AMP on calcium accumulation and release in dog submandibular microsomes. Biochem Pharmacol. 1977 Jan 15;26(2):125–127. doi: 10.1016/0006-2952(77)90383-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES