Abstract
1. The rapid stimulation of intestinal Ca2+ transport observed in vitamin D-deficient chicks after receiving 1,25-dihydroxycholecalciferol has necessitated a re-evaluation of the correlation hitherto observed between this stimulation and the induction of calcium-binding protein synthesis. By 1h after a dose of 125ng of 1,25-dihydroxycholecalciferol, Ca2+ transport is increased. This is at least 2h before calcium-binding protein can be detected immunologically and 1h before synthesis of the protein begins on polyribosomes, and thus the hormone stimulates Ca2+ transport before calcium-binding-protein biosynthesis is induced. 2. The maximum increase in Ca2+ transport observed after this dose of 1,25-dihydroxycholecalciferol (attained by 8h) is similar to that observed after 1.25–25μg of cholecalciferol, but the stimulation is only short-lived, in contrast with the effect observed after the vitamin. At later times after the hormone, however, when Ca2+ transport has declined to its basal rate, the cellular content of calcium-binding protein remains elevated. 3. Calcium-binding protein is synthesized on free rather than membrane-bound polyribosomes, which implies that it is an intracellular protein. 4. Rachitic chicks require the presence of dietary calcium for maximum stimulation of calcium-binding protein production by cholecalciferol. 5. These results suggest that calcium-binding protein is an intracellular protein, and that its synthesis may be a consequence of the raised intracellular calcium content of the intestinal epithelial cells resulting from 1,25-dihydroxycholecalciferol-stimulated Ca2+ transport. We propose that calcium-binding-protein synthesis is necessary for maintaining the stimulated rate of Ca2+ transport, which is initiated by other factors.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnold B. M., Kovacs K., Murray T. M. Cellular localization of intestinal calcium-binding protein in pig duodenum. Digestion. 1976;14(1):77–84. doi: 10.1159/000197801. [DOI] [PubMed] [Google Scholar]
- Blobel G., Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol. 1975 Dec;67(3):835–851. doi: 10.1083/jcb.67.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corradino R. A. 1,25-Dihydroxycholecalciferol: inhibition of action in organ-cultured intestine by actinomycin D and alpha-amanitin. Nature. 1973 May 4;243(5401):41–43. doi: 10.1038/243041a0. [DOI] [PubMed] [Google Scholar]
- Ebel J. G., Taylor A. N., Wasserman R. H. Vitamin D-induced calcium-binding protein of intestinal mucosa. Relation to vitamin D dose level and lag period. Am J Clin Nutr. 1969 Apr;22(4):431–436. doi: 10.1093/ajcn/22.4.431. [DOI] [PubMed] [Google Scholar]
- Emtage J. S., Lawson D. E., Kodicek E. The response of the small intestine to vitamin D. Isolation and properties of chick intestinal polyribosomes. Biochem J. 1974 May;140(2):239–247. doi: 10.1042/bj1400239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emtage J. S., Lawson E. M., Kodicek E. The response of the small intestine to vitamin D. Correlation between calcium-binding-protein production and increased calcium absorption. Biochem J. 1974 Nov;144(2):339–346. doi: 10.1042/bj1440339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fraser D. R., Kodicek E. Unique biosynthesis by kidney of a biological active vitamin D metabolite. Nature. 1970 Nov 21;228(5273):764–766. doi: 10.1038/228764a0. [DOI] [PubMed] [Google Scholar]
- Harmeyer J., Deluca H. F. Calcium-binding protein and calcium absorption after vitamin D administration. Arch Biochem Biophys. 1969 Sep;133(2):247–254. doi: 10.1016/0003-9861(69)90452-4. [DOI] [PubMed] [Google Scholar]
- Harrison T. M., Brownlee G. G., Milstein C. Preparation of immunologlobulin light-chain mRNA from microsomes without the use of detergent. Eur J Biochem. 1974 Sep 16;47(3):621–627. doi: 10.1111/j.1432-1033.1974.tb03734.x. [DOI] [PubMed] [Google Scholar]
- Hurwitz S., Harrison H. C., Harrison H. E. Effect of vitamin D3 on the in vitro transport of calcium by the chick intestine. J Nutr. 1967 Mar;91(3):319–323. doi: 10.1093/jn/91.3_Suppl.319. [DOI] [PubMed] [Google Scholar]
- Laurell C. B. Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies. Anal Biochem. 1966 Apr;15(1):45–52. doi: 10.1016/0003-2697(66)90246-6. [DOI] [PubMed] [Google Scholar]
- Lawson D. E., Wilson P. W. Intranuclear localization and receptor proteins for 1,25-dihydroxycholecalciferol in chick intestine. Biochem J. 1974 Dec;144(3):573–583. doi: 10.1042/bj1440573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrissey R. L., Wasserman R. H. Calcium absorption and calcium-binding protein in chicks on differing calcium and phosphorus intakes. Am J Physiol. 1971 May;220(5):1509–1515. doi: 10.1152/ajplegacy.1971.220.5.1509. [DOI] [PubMed] [Google Scholar]
- Norman A. W. The hormone-like action of 1,25-(OH)2-cholecalciferol (a metabolite of the fat-soluble vitamin D) in the intestine. Vitam Horm. 1974;32:325–384. doi: 10.1016/s0083-6729(08)60018-7. [DOI] [PubMed] [Google Scholar]
- Omdahl J. L., Thornton P. A. Intestinal calcium absorption and calcium-binding protein: influence of dietary calcium. Proc Soc Exp Biol Med. 1972 Mar;139(3):975–980. doi: 10.3181/00379727-139-36279. [DOI] [PubMed] [Google Scholar]
- Palmiter R. D. Magnesium precipitation of ribonucleoprotein complexes. Expedient techniques for the isolation of undergraded polysomes and messenger ribonucleic acid. Biochemistry. 1974 Aug 13;13(17):3606–3615. doi: 10.1021/bi00714a032. [DOI] [PubMed] [Google Scholar]
- Spencer R., Charman M., Lawson D. E., Emtage J. S. Production and properties of vitamin-D-induced mRNA for chick calcium-binding protein. Eur J Biochem. 1976 Dec 11;71(2):399–409. doi: 10.1111/j.1432-1033.1976.tb11127.x. [DOI] [PubMed] [Google Scholar]
- Spencer R., Charman M., Wilson P., Lawson E. Vitamin d-stimulated intestinal calcium absorption may not involve calcium-binding protein directly. Nature. 1976 Sep 9;263(5573):161–163. doi: 10.1038/263161a0. [DOI] [PubMed] [Google Scholar]
- Taylor A. N., Wasserman R. H. Correlations between the vitamin D-induced calcium binding protein and intestinal absorption of calcium. Fed Proc. 1969 Nov-Dec;28(6):1834–1838. [PubMed] [Google Scholar]
- Taylor A. N., Wasserman R. H. Immunofluorescent localization of vitamin D-dependent calcium-binding protein. J Histochem Cytochem. 1970 Feb;18(2):107–115. doi: 10.1177/18.2.107. [DOI] [PubMed] [Google Scholar]
- Tsai H. C., Norman A. W. Studies on the mode of action of calciferol. VI. Effect of 1,25-dihydroxy-vitamin D3 on RNA synthesis in the intestinal mucosa. Biochem Biophys Res Commun. 1973 Sep 18;54(2):622–627. doi: 10.1016/0006-291x(73)91468-x. [DOI] [PubMed] [Google Scholar]
- Wasserman R. H., Corradino R. A., Fullmer C. S., Taylor A. N. Some aspects of vitamin D action; calcium absorption and the vitamin D-dependent calcium-binding protein. Vitam Horm. 1974;32:299–324. doi: 10.1016/s0083-6729(08)60017-5. [DOI] [PubMed] [Google Scholar]
- Wasserman R. H., Corradino R. A., Taylor A. N. Vitamin D-dependent calcium-binding protein. Purification and some properties. J Biol Chem. 1968 Jul 25;243(14):3978–3986. [PubMed] [Google Scholar]
- Zerwekh J. E., Haussler M. R., Lindell T. J. Rapid enhancement of chick intestinal DNA-dependent RNA polymerase II activity by 1 alpha, 25-dihydroxyvitamin D3, in vivo. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2337–2341. doi: 10.1073/pnas.71.6.2337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zerwekh J. E., Lindell T. J., Haussler M. R. Increased intestinal chromatin template activity. Influence of 1alpha,25-dihydroxyvitamin D3 and hormone-receptor complexes. J Biol Chem. 1976 Apr 25;251(8):2388–2394. [PubMed] [Google Scholar]