Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Jan 15;170(1):93–101. doi: 10.1042/bj1700093

The relationship between vitamin D-stimulated calcium transport and intestinal calcium-binding protein in the chicken

Rosemary Spencer 1, Marilyn Charman 1, Peter W Wilson 1, D Eric M Lawson 1
PMCID: PMC1183865  PMID: 204303

Abstract

1. The rapid stimulation of intestinal Ca2+ transport observed in vitamin D-deficient chicks after receiving 1,25-dihydroxycholecalciferol has necessitated a re-evaluation of the correlation hitherto observed between this stimulation and the induction of calcium-binding protein synthesis. By 1h after a dose of 125ng of 1,25-dihydroxycholecalciferol, Ca2+ transport is increased. This is at least 2h before calcium-binding protein can be detected immunologically and 1h before synthesis of the protein begins on polyribosomes, and thus the hormone stimulates Ca2+ transport before calcium-binding-protein biosynthesis is induced. 2. The maximum increase in Ca2+ transport observed after this dose of 1,25-dihydroxycholecalciferol (attained by 8h) is similar to that observed after 1.25–25μg of cholecalciferol, but the stimulation is only short-lived, in contrast with the effect observed after the vitamin. At later times after the hormone, however, when Ca2+ transport has declined to its basal rate, the cellular content of calcium-binding protein remains elevated. 3. Calcium-binding protein is synthesized on free rather than membrane-bound polyribosomes, which implies that it is an intracellular protein. 4. Rachitic chicks require the presence of dietary calcium for maximum stimulation of calcium-binding protein production by cholecalciferol. 5. These results suggest that calcium-binding protein is an intracellular protein, and that its synthesis may be a consequence of the raised intracellular calcium content of the intestinal epithelial cells resulting from 1,25-dihydroxycholecalciferol-stimulated Ca2+ transport. We propose that calcium-binding-protein synthesis is necessary for maintaining the stimulated rate of Ca2+ transport, which is initiated by other factors.

Full text

PDF
93

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold B. M., Kovacs K., Murray T. M. Cellular localization of intestinal calcium-binding protein in pig duodenum. Digestion. 1976;14(1):77–84. doi: 10.1159/000197801. [DOI] [PubMed] [Google Scholar]
  2. Blobel G., Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol. 1975 Dec;67(3):835–851. doi: 10.1083/jcb.67.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Corradino R. A. 1,25-Dihydroxycholecalciferol: inhibition of action in organ-cultured intestine by actinomycin D and alpha-amanitin. Nature. 1973 May 4;243(5401):41–43. doi: 10.1038/243041a0. [DOI] [PubMed] [Google Scholar]
  4. Ebel J. G., Taylor A. N., Wasserman R. H. Vitamin D-induced calcium-binding protein of intestinal mucosa. Relation to vitamin D dose level and lag period. Am J Clin Nutr. 1969 Apr;22(4):431–436. doi: 10.1093/ajcn/22.4.431. [DOI] [PubMed] [Google Scholar]
  5. Emtage J. S., Lawson D. E., Kodicek E. The response of the small intestine to vitamin D. Isolation and properties of chick intestinal polyribosomes. Biochem J. 1974 May;140(2):239–247. doi: 10.1042/bj1400239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Emtage J. S., Lawson E. M., Kodicek E. The response of the small intestine to vitamin D. Correlation between calcium-binding-protein production and increased calcium absorption. Biochem J. 1974 Nov;144(2):339–346. doi: 10.1042/bj1440339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fraser D. R., Kodicek E. Unique biosynthesis by kidney of a biological active vitamin D metabolite. Nature. 1970 Nov 21;228(5273):764–766. doi: 10.1038/228764a0. [DOI] [PubMed] [Google Scholar]
  8. Harmeyer J., Deluca H. F. Calcium-binding protein and calcium absorption after vitamin D administration. Arch Biochem Biophys. 1969 Sep;133(2):247–254. doi: 10.1016/0003-9861(69)90452-4. [DOI] [PubMed] [Google Scholar]
  9. Harrison T. M., Brownlee G. G., Milstein C. Preparation of immunologlobulin light-chain mRNA from microsomes without the use of detergent. Eur J Biochem. 1974 Sep 16;47(3):621–627. doi: 10.1111/j.1432-1033.1974.tb03734.x. [DOI] [PubMed] [Google Scholar]
  10. Hurwitz S., Harrison H. C., Harrison H. E. Effect of vitamin D3 on the in vitro transport of calcium by the chick intestine. J Nutr. 1967 Mar;91(3):319–323. doi: 10.1093/jn/91.3_Suppl.319. [DOI] [PubMed] [Google Scholar]
  11. Laurell C. B. Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies. Anal Biochem. 1966 Apr;15(1):45–52. doi: 10.1016/0003-2697(66)90246-6. [DOI] [PubMed] [Google Scholar]
  12. Lawson D. E., Wilson P. W. Intranuclear localization and receptor proteins for 1,25-dihydroxycholecalciferol in chick intestine. Biochem J. 1974 Dec;144(3):573–583. doi: 10.1042/bj1440573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Morrissey R. L., Wasserman R. H. Calcium absorption and calcium-binding protein in chicks on differing calcium and phosphorus intakes. Am J Physiol. 1971 May;220(5):1509–1515. doi: 10.1152/ajplegacy.1971.220.5.1509. [DOI] [PubMed] [Google Scholar]
  14. Norman A. W. The hormone-like action of 1,25-(OH)2-cholecalciferol (a metabolite of the fat-soluble vitamin D) in the intestine. Vitam Horm. 1974;32:325–384. doi: 10.1016/s0083-6729(08)60018-7. [DOI] [PubMed] [Google Scholar]
  15. Omdahl J. L., Thornton P. A. Intestinal calcium absorption and calcium-binding protein: influence of dietary calcium. Proc Soc Exp Biol Med. 1972 Mar;139(3):975–980. doi: 10.3181/00379727-139-36279. [DOI] [PubMed] [Google Scholar]
  16. Palmiter R. D. Magnesium precipitation of ribonucleoprotein complexes. Expedient techniques for the isolation of undergraded polysomes and messenger ribonucleic acid. Biochemistry. 1974 Aug 13;13(17):3606–3615. doi: 10.1021/bi00714a032. [DOI] [PubMed] [Google Scholar]
  17. Spencer R., Charman M., Lawson D. E., Emtage J. S. Production and properties of vitamin-D-induced mRNA for chick calcium-binding protein. Eur J Biochem. 1976 Dec 11;71(2):399–409. doi: 10.1111/j.1432-1033.1976.tb11127.x. [DOI] [PubMed] [Google Scholar]
  18. Spencer R., Charman M., Wilson P., Lawson E. Vitamin d-stimulated intestinal calcium absorption may not involve calcium-binding protein directly. Nature. 1976 Sep 9;263(5573):161–163. doi: 10.1038/263161a0. [DOI] [PubMed] [Google Scholar]
  19. Taylor A. N., Wasserman R. H. Correlations between the vitamin D-induced calcium binding protein and intestinal absorption of calcium. Fed Proc. 1969 Nov-Dec;28(6):1834–1838. [PubMed] [Google Scholar]
  20. Taylor A. N., Wasserman R. H. Immunofluorescent localization of vitamin D-dependent calcium-binding protein. J Histochem Cytochem. 1970 Feb;18(2):107–115. doi: 10.1177/18.2.107. [DOI] [PubMed] [Google Scholar]
  21. Tsai H. C., Norman A. W. Studies on the mode of action of calciferol. VI. Effect of 1,25-dihydroxy-vitamin D3 on RNA synthesis in the intestinal mucosa. Biochem Biophys Res Commun. 1973 Sep 18;54(2):622–627. doi: 10.1016/0006-291x(73)91468-x. [DOI] [PubMed] [Google Scholar]
  22. Wasserman R. H., Corradino R. A., Fullmer C. S., Taylor A. N. Some aspects of vitamin D action; calcium absorption and the vitamin D-dependent calcium-binding protein. Vitam Horm. 1974;32:299–324. doi: 10.1016/s0083-6729(08)60017-5. [DOI] [PubMed] [Google Scholar]
  23. Wasserman R. H., Corradino R. A., Taylor A. N. Vitamin D-dependent calcium-binding protein. Purification and some properties. J Biol Chem. 1968 Jul 25;243(14):3978–3986. [PubMed] [Google Scholar]
  24. Zerwekh J. E., Haussler M. R., Lindell T. J. Rapid enhancement of chick intestinal DNA-dependent RNA polymerase II activity by 1 alpha, 25-dihydroxyvitamin D3, in vivo. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2337–2341. doi: 10.1073/pnas.71.6.2337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zerwekh J. E., Lindell T. J., Haussler M. R. Increased intestinal chromatin template activity. Influence of 1alpha,25-dihydroxyvitamin D3 and hormone-receptor complexes. J Biol Chem. 1976 Apr 25;251(8):2388–2394. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES