Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Feb 15;170(2):285–295. doi: 10.1042/bj1700285

Lipid oxidation by heart mitochondria from young adult and senescent rats

Richard G Hansford 1
PMCID: PMC1183895  PMID: 637843

Abstract

1. State-3 (i.e. ADP-stimulated) rates of O2 uptake with palmitoylcarnitine, palmitoyl-CoA plus carnitine, pyruvate plus malonate plus carnitine and octanoate as respiratory substrate were all diminished in heart mitochondria isolated from senescent (24-month-old) rats compared with mitochondria from young adults (6 months old). By contrast, State-3 rates of O2 uptake with pyruvate plus malate or glutamate plus malate were the same for mitochondria from each age group. 2. Measurements of enzyme activities in disrupted mitochondria showed a decline with senescence in the activity of acyl-CoA synthetase (EC 6.2.1.2 and 6.2.1.3), carnitine acetyltransferase (EC 2.3.1.7) and 3-hydroxy-acyl-CoA dehydrogenase (EC 1.1.1.35), but no change in the activity of carnitine palmitoyltransferase (EC 2.3.1.21) or acyl-CoA dehydrogenase (EC 1.3.99.3). 3. Measurement of dl-[3H]carnitine (in)/acetyl-l-carnitine (out) exchange in intact mitochondria showed decreased rates when the animals used were senescent. However, this followed from a decreased intramitochondrial pool of exchangeable carnitine, such that calculated first-order rate constants for exchange were identical in mitochondria from the two age groups. 4. The decline in acyl-CoA synthetase activity is thought to be the reason for the diminished rate of O2 uptake with octanoate in senescence. The decline in carnitine acetyltransferase activity is considered to be the cause of the diminished rate of O2 uptake with acetylcarnitine or with pyruvate plus malonate plus carnitine as substrate. The mechanism of the diminished rate of O2 uptake with palmitoylcarnitine in senescence is discussed.

Full text

PDF
285

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARMSTRONG J. M. THE MOLAR EXTINCTION COEFFICIENT OF 2,6-DICHLOROPHENOL INDOPHENOL. Biochim Biophys Acta. 1964 Apr 4;86:194–197. doi: 10.1016/0304-4165(64)90180-1. [DOI] [PubMed] [Google Scholar]
  2. Abu-Erreish G. M., Neely J. R., Whitmer J. T., Whitman V., Sanadi D. R. Fatty acid oxidation by isolated perfused working hearts of aged rats. Am J Physiol. 1977 Mar;232(3):E258–E262. doi: 10.1152/ajpendo.1977.232.3.E258. [DOI] [PubMed] [Google Scholar]
  3. BEINERT H., GREEN D. E., HELE P., HIFT H., VON KORFF R. W., RAMAKRISHNAN C. V. The acetate activating enzyme system of heart muscle. J Biol Chem. 1953 Jul;203(1):35–45. [PubMed] [Google Scholar]
  4. BODE C., KLINGENBERG M. DIE VERATMUNG VON FETTSAEUREN IN ISOLIERTEN MITOCHONDRIEN. Biochem Z. 1965 Feb 24;341:271–299. [PubMed] [Google Scholar]
  5. Bass A., Brdiczka D., Eyer P., Hofer S., Pette D. Metabolic differentiation of distinct muscle types at the level of enzymatic organization. Eur J Biochem. 1969 Sep;10(2):198–206. doi: 10.1111/j.1432-1033.1969.tb00674.x. [DOI] [PubMed] [Google Scholar]
  6. Brosnan J. T., Kopec B., Fritz I. B. The localization of carnitine palmitoyltransferase on the inner membrane of bovine liver mitochondria. J Biol Chem. 1973 Jun 10;248(11):4075–4082. [PubMed] [Google Scholar]
  7. CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem. 1955 Nov;217(1):409–427. [PubMed] [Google Scholar]
  8. Chen J. C., Warshaw J. B., Sanadi D. R. Regulation of mitochondrial respiration in senescence. J Cell Physiol. 1972 Aug;80(1):141–148. doi: 10.1002/jcp.1040800115. [DOI] [PubMed] [Google Scholar]
  9. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  10. FRITZ I. B., YUE K. T. LONG-CHAIN CARNITINE ACYLTRANSFERASE AND THE ROLE OF ACYLCARNITINE DERIVATIVES IN THE CATALYTIC INCREASE OF FATTY ACID OXIDATION INDUCED BY CARNITINE. J Lipid Res. 1963 Jul;4:279–288. [PubMed] [Google Scholar]
  11. Garland P. B., Shepherd D., Yates D. W. Steady-state concentrations of coenzyme A, acetyl-coenzyme A and long-chain fatty acyl-coenzyme A in rat-liver mitochondria oxidizing palmitate. Biochem J. 1965 Nov;97(2):587–594. doi: 10.1042/bj0970587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gold P. H., Gee M. V., Strehler B. L. Effect of age on oxidative phosphorylation in the rat. J Gerontol. 1968 Oct;23(4):509–512. doi: 10.1093/geronj/23.4.509. [DOI] [PubMed] [Google Scholar]
  13. Hansford R. G. Studies on inactivation of pyruvate dehydrogenase by palmitoylcarnitine oxidation in isolated rat heart mitochondria. J Biol Chem. 1977 Mar 10;252(5):1552–1560. [PubMed] [Google Scholar]
  14. Levitsky D. O., Skulachev V. P. Carnitine: the carrier transporting fatty acyls into mitochondria by means of an electrochemical gradient of H + . Biochim Biophys Acta. 1972 Jul 12;275(1):33–50. doi: 10.1016/0005-2728(72)90022-9. [DOI] [PubMed] [Google Scholar]
  15. Neely J. R., Rovetto M. J., Oram J. F. Myocardial utilization of carbohydrate and lipids. Prog Cardiovasc Dis. 1972 Nov-Dec;15(3):289–329. doi: 10.1016/0033-0620(72)90029-1. [DOI] [PubMed] [Google Scholar]
  16. Oram J. F., Bennetch S. L., Neely J. R. Regulation of fatty acid utilization in isolated perfused rat hearts. J Biol Chem. 1973 Aug 10;248(15):5299–5309. [PubMed] [Google Scholar]
  17. Pande S. V. A mitochondrial carnitine acylcarnitine translocase system. Proc Natl Acad Sci U S A. 1975 Mar;72(3):883–887. doi: 10.1073/pnas.72.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pande S. V. On rate-controlling factors of long chain fatty acid oxidation. J Biol Chem. 1971 Sep 10;246(17):5384–5390. [PubMed] [Google Scholar]
  19. Pande S. V., Parvin R. Characterization of carnitine acylcarnitine translocase system of heart mitochondria. J Biol Chem. 1976 Nov 10;251(21):6683–6691. [PubMed] [Google Scholar]
  20. Pearson D. J., Tubbs P. K. Carnitine and derivatives in rat tissues. Biochem J. 1967 Dec;105(3):953–963. doi: 10.1042/bj1050953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ramsay R. R., Tubbs P. K. The effects of temperature and some inhibitors on the carnitine exchange system of heart mitochondria. Eur J Biochem. 1976 Oct 1;69(1):299–303. doi: 10.1111/j.1432-1033.1976.tb10886.x. [DOI] [PubMed] [Google Scholar]
  22. Ramsay R. R., Tubbs P. K. The mechanism of fatty acid uptake by heart mitochondria: an acylcarnitine-carnitine exchange. FEBS Lett. 1975 Jun 1;54(1):21–25. doi: 10.1016/0014-5793(75)81059-3. [DOI] [PubMed] [Google Scholar]
  23. Stanley K. K., Tubbs P. K. The occurrence of intermediates in mitochondrial fatty acid oxidation. FEBS Lett. 1974 Mar 1;39(3):325–328. doi: 10.1016/0014-5793(74)80141-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES