Abstract
Control of the rate of cardiac cell division by oxygen occurs most probably by altering the redox state of a control substance, e.g. NAD+⇌NADH. NAD+ (and not NADH) forms poly(ADP-ribose), an inhibitor of DNA synthesis, in a reaction catalysed by poly(ADP-ribose) polymerase. Lower partial pressure of oxygen, which increases the rate of division, would shift NAD+→NADH, decrease poly(ADP-ribose) synthesis, and increase DNA synthesis. Chick-embryo heart cells grown in culture in 20% O2 (in which they divide more slowly than in 5% O2) did exhibit greater poly(ADP-ribose) polymerase activity (+83%, P<0.001) than when grown in 5% O2. Reaction product was identified as poly(ADP-ribose) by its insensitivity to deoxyribonuclease, ribonuclease, NAD glycohydrolase, Pronase, trypsin and micrococcal nuclease, and by its complete digestion with snake-venom phosphodiesterase to phosphoribosyl-AMP and AMP. Isolation of these digestion products by Dowex 1 (formate form) column chromatography and paper chromatography allowed calculation of average poly(ADP-ribose) chain length, which was 15–26% greater in 20% than in 5% O2. Thus in 20% O2 the increase in poly(ADP-ribose) formation results from chain elongation. Formation of new chains also occurs, probably to an even greater degree than chain elongation. Additionally, poly(ADP-ribose) polymerase has very different Km and Vmax. values and pH optima in 20% and 5% O2. These data suggest that poly(ADP-ribose) metabolism participates in the regulation of heart-cell division by O2, probably by several different mechanisms.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albers J. J., Bierman E. L. The effect of hypoxia on uptake and degradation of low density lipoproteins by cultured human arterial smooth muscle cells. Biochim Biophys Acta. 1976 Mar 26;424(3):422–429. doi: 10.1016/0005-2760(76)90031-x. [DOI] [PubMed] [Google Scholar]
- BROSEMER R. W., RUTTER W. J. The effect of oxygen tension on the growth and metabolism of a mammalian cell. Exp Cell Res. 1961 Oct;25:101–113. doi: 10.1016/0014-4827(61)90311-1. [DOI] [PubMed] [Google Scholar]
- Burzio L. O., Riquelme P. T., Koide S. S. A new method for the assay of poly(adenosine diphosphate ribose) glycohydrolase activity. Anal Biochem. 1975 Jun;66(2):434–445. doi: 10.1016/0003-2697(75)90611-9. [DOI] [PubMed] [Google Scholar]
- Burzio L., Koide S. S. A functional role of polyADPR in DNA synthesis. Biochem Biophys Res Commun. 1970 Sep 10;40(5):1013–1020. doi: 10.1016/0006-291x(70)90894-6. [DOI] [PubMed] [Google Scholar]
- Burzio L., Koide S. S. In vitro effect of NAD on DNa synthesis in isolated nuclei from regenerating rat liver and novikoff hepatoma. FEBS Lett. 1972 Jan 15;20(1):29–32. doi: 10.1016/0014-5793(72)80009-7. [DOI] [PubMed] [Google Scholar]
- CHAMBON P., WEILL J. D., MANDEL P. Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem Biophys Res Commun. 1963 Apr 2;11:39–43. doi: 10.1016/0006-291x(63)90024-x. [DOI] [PubMed] [Google Scholar]
- Claycomb W. C. Poly(adenosine diphosphate ribose) polymerase activity and nicotinamide adenine dinucleotide in differentiating cardiac muscle. Biochem J. 1976 Feb 15;154(2):387–393. doi: 10.1042/bj1540387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dungan S. M., Berger B., Zervoudakis R. J., Dietrich L. S. Solubilization and properties of poly(ADP-ribose) polymerases from bovine spleen and Ehrlich ascites cells. Biochim Biophys Acta. 1974 Dec 6;374(2):220–237. doi: 10.1016/0005-2787(74)90365-7. [DOI] [PubMed] [Google Scholar]
- Edgar J. A. Dehydroascorbic acid and cell division. Nature. 1970 Jul 4;227(5253):24–26. doi: 10.1038/227024a0. [DOI] [PubMed] [Google Scholar]
- Fujimura S., Hasegawa S., Shimizu Y., Sugimura T. Polymerization of the adenosine 5'-diphosphate-ribose moiety of nicotinamide-adenine dinucleotide by nuclear enzyme. I. Enzymatic reactions. Biochim Biophys Acta. 1967 Sep 26;145(2):247–259. doi: 10.1016/0005-2787(67)90043-3. [DOI] [PubMed] [Google Scholar]
- Hasegawa S., Fujimura S., Shimizu Y., Sugimura R. The polymerization of adenosine 5'-diphosphate-ribose moiety of NAD by nuclear enzyme. II. Properties of the reaction product. Biochim Biophys Acta. 1967 Dec 19;149(2):369–376. [PubMed] [Google Scholar]
- Hilz H., Stone P. Poly(ADP-ribose) and ADP-ribosylation of proteins. Rev Physiol Biochem Pharmacol. 1976;76:1-58, 177. doi: 10.1007/BFb0027686. [DOI] [PubMed] [Google Scholar]
- Hollenberg M. Effect of oxygen on growth of cultured myocardial cells. Circ Res. 1971 Feb;28(2):148–157. doi: 10.1161/01.res.28.2.148. [DOI] [PubMed] [Google Scholar]
- Hollenberg M., Honbo N., Samorodin A. J. Effects of hypoxia on cardiac growth in neonatal rat. Am J Physiol. 1976 Nov;231(5 Pt 1):1445–1450. doi: 10.1152/ajplegacy.1976.231.5.1445. [DOI] [PubMed] [Google Scholar]
- Janakidevi K., Ko C. Synthesis of polyadenosine diphosphate ribose by isolated nuclei of swine aortic tissue. Biochemistry. 1974 Mar 26;13(7):1327–1330. [PubMed] [Google Scholar]
- Kidwell W. R., Burdette K. E. Poly(ADP-ribose) synthesis and cell division. Biochem Biophys Res Commun. 1974 Nov 27;61(2):766–774. doi: 10.1016/0006-291x(74)91023-7. [DOI] [PubMed] [Google Scholar]
- Kidwell W. R., Mage M. G. Changes in poly(adenosine diphosphate-ribose) and poly(adenosine diphosphate-ribose) polymerase in synchronous HeLa cells. Biochemistry. 1976 Mar 23;15(6):1213–1217. doi: 10.1021/bi00651a006. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lehmann A. R., Shall S. No inhibition of endogenous DNA polymerase by synthesis of poly (ADP-ribose) in nuclei from lymphoid cells. FEBS Lett. 1972 Oct 1;26(1):181–184. doi: 10.1016/0014-5793(72)80568-4. [DOI] [PubMed] [Google Scholar]
- Lindy S., Rajasalmi M. Lactate dehydrogenase isozymes of chick embryo: response to variations of ambient oxygen tension. Science. 1966 Sep 16;153(3742):1401–1403. doi: 10.1126/science.153.3742.1401. [DOI] [PubMed] [Google Scholar]
- MORTON R. K. Enzymic synthesis of coenzyme I in relation to chemical control of cell growth. Nature. 1958 Feb 22;181(4608):540–542. doi: 10.1038/181540a0. [DOI] [PubMed] [Google Scholar]
- Miller E. G. Effect of deoxyribonuclease I on the number and length of chains of poly(ADP-ribose) synthesized, in vitro. Biochem Biophys Res Commun. 1975 Sep 2;66(1):280–286. doi: 10.1016/s0006-291x(75)80325-1. [DOI] [PubMed] [Google Scholar]
- Miwa M., Sugimura T., Inui N., Takayama S. Poly(adenosine diphosphate ribose) synthesis during the cell cycle of transformed hamster lung cells. Cancer Res. 1973 Jun;33(6):1306–1309. [PubMed] [Google Scholar]
- Nishizuka Y., Ueda K., Nakazawa K., Hayaishi O. Studies on the polymer of adenosine diphosphate ribose. I. Enzymic formation from nicotinamide adenine dinuclotide in mammalian nuclei. J Biol Chem. 1967 Jul 10;242(13):3164–3171. [PubMed] [Google Scholar]
- Nishizuka Y., Ueda K., Yoshihara K., Yamamura H., Takeda M., Hayaishi O. Enzymic adenosine diphosphoribosylation of nuclear proteins. Cold Spring Harb Symp Quant Biol. 1969;34:781–786. doi: 10.1101/sqb.1969.034.01.088. [DOI] [PubMed] [Google Scholar]
- RUECKERT R. R., MUELLER G. C. Effect of oxygen tension on HeLa cell growth. Cancer Res. 1960 Jul;20:944–949. [PubMed] [Google Scholar]
- Roberts J. H., Stard P., Giri C. P., Smulson M. Cytoplasmic poly(ADP-ribose) polymerase during the HeLa cell cycle. Arch Biochem Biophys. 1975 Nov;171(1):305–315. doi: 10.1016/0003-9861(75)90037-5. [DOI] [PubMed] [Google Scholar]
- Roberts J. H., Stark P., Smulson M. Stimulation of DNA synthesis by adenosine diphosphoribosylation of HeLa nuclear proteins during the cell cycle. Biochem Biophys Res Commun. 1973 May 1;52(1):43–50. doi: 10.1016/0006-291x(73)90951-0. [DOI] [PubMed] [Google Scholar]
- Sasaki R., Morishita T., Yamagata S. Autoradiographic studies on heart muscle cells in normal rats. Tohoku J Exp Med. 1970 Jan;100(1):1–13. doi: 10.1620/tjem.100.1. [DOI] [PubMed] [Google Scholar]
- Shima T., Hasegawa S., Fujimura S., Matsubara H., Sugimura T. Studies on poly adenosine diphosphate-ribose. VII. Methods of separation and identification of 2'-(5"-phosphoribosyl)-5'-adenosine monophosphate, ribosyladenosine monophosphate, and phosphoribosyladenosine. J Biol Chem. 1969 Dec 25;244(24):6632–6635. [PubMed] [Google Scholar]
- Shires T. K., Narurkar L., Pitot H. C. The association in vitro of polyribosomes with ribonuclease-treated derivatives of hepatic rough endoplasmic reticulum. Characteristics of the membrane binding sites and factors influencing association. Biochem J. 1971 Nov;125(1):67–79. doi: 10.1042/bj1250067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smulson M., Stark P., Gazzoli M., Roberts J. Release of template restriction for DNA synthesis by poly ADP(ribose) polymerase during the HeLa cell cycle. Exp Cell Res. 1975 Jan;90(1):175–182. doi: 10.1016/0014-4827(75)90371-7. [DOI] [PubMed] [Google Scholar]
- Szent-Györgyi A. Studies on cellular regulations. Perspect Biol Med. 1968 Spring;11(3):350–357. doi: 10.1353/pbm.1968.0030. [DOI] [PubMed] [Google Scholar]
- Taylor G. W., Kondig J. P., Nagle S. C., Jr, Higuchi K. Growth and metabolism of L cells in a chemically defined medium in a controlled environment culture system. I. Effects of O2 tension on L-cell cultures. Appl Microbiol. 1971 May;21(5):928–933. doi: 10.1128/am.21.5.928-933.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor W. G., Richter A., Evans V. J., Sanford K. K. Influence of oxygen and pH on plating efficiency and colony development of WI-38 and Vero cells. Exp Cell Res. 1974 May;86(1):152–156. doi: 10.1016/0014-4827(74)90660-0. [DOI] [PubMed] [Google Scholar]
- Ueda K., Omachi A., Kawaichi M., Hayaishi O. Natural occurrence of poly(ADP-ribosyl) histones in rat liver. Proc Natl Acad Sci U S A. 1975 Jan;72(1):205–209. doi: 10.1073/pnas.72.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
