Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1978 Feb 15;170(2):445–448. doi: 10.1042/bj1700445

Calcitonin-mediated changes in plasma tryptophan and brain 5-hydroxytryptamine and acetylcholinesterase activity in rats.

A M Nakhla, A P Nandi Majumdar
PMCID: PMC1183913  PMID: 637854

Abstract

After a single injection of calcitonin (20 M.R.C. units/kg body wt.) marked decreases in both Ca2+ and free tryptophan in plasma were observed, during the initial period of the treatment (up to 1 h). However, 5-hydrotryptamine contents of the whole brain and the cerebral acetylcholinesterase activity were greatly enhanced. The cerebellar acetylcholinesterase activity was not influenced by calcitonin.

Full text

PDF
445

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aprison M. H., Hingtgen J. N., McBride W. J. Serotonergic and cholinergic mechanisms during disruption of approach and avoidance behavior. Fed Proc. 1975 Aug;34(9):1813–1822. [PubMed] [Google Scholar]
  2. Bloxam D. L., Warren W. H. Error in the determination of tryptophan by the method of Denkla and Dewey. A revised procedure. Anal Biochem. 1974 Aug;60(2):621–625. doi: 10.1016/0003-2697(74)90275-9. [DOI] [PubMed] [Google Scholar]
  3. Curzon G., Green A. R. Rapid method for the determination of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in small regions of rat brain. Br J Pharmacol. 1970 Jul;39(3):653–655. doi: 10.1111/j.1476-5381.1970.tb10373.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Denckla W. D., Dewey H. K. The determination of tryptophan in plasma, liver, and urine. J Lab Clin Med. 1967 Jan;69(1):160–169. [PubMed] [Google Scholar]
  5. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  6. Fernstrom J. D., Wurtman R. J. Brain serotonin content: increase following ingestion of carbohydrate diet. Science. 1971 Dec 3;174(4013):1023–1025. doi: 10.1126/science.174.4013.1023. [DOI] [PubMed] [Google Scholar]
  7. Fernstrom J. D., Wurtman R. J. Brain serotonin content: physiological dependence on plasma tryptophan levels. Science. 1971 Jul 9;173(3992):149–152. doi: 10.1126/science.173.3992.149. [DOI] [PubMed] [Google Scholar]
  8. Haymovits A., Gershon M. D., Nunez E. A. Calcitonin, serotonin and parafollicular cell granules during the hibernation activity cycle in the bat. Proc Soc Exp Biol Med. 1976 Dec;153(3):383–387. doi: 10.3181/00379727-153-39551. [DOI] [PubMed] [Google Scholar]
  9. Lehmann J. Light--a source of error in the fluorometric determination of tryptophan. Scand J Clin Lab Invest. 1971 Sep;28(1):49–55. doi: 10.3109/00365517109090662. [DOI] [PubMed] [Google Scholar]
  10. Majumdar P. N., Nakhla A. M. Influence of tryptophan on the activity of acetylcholinesterase in the brain of well-fed normal and adrenalectomized rats. Biochem Biophys Res Commun. 1977 May 9;76(1):71–77. doi: 10.1016/0006-291x(77)91669-2. [DOI] [PubMed] [Google Scholar]
  11. Munro H. N., Fernstrom J. D., Wurtman R. J. Insulin, plasma aminoacid imbalance, and hepatic coma. Lancet. 1975 Mar 29;1(7909):722–724. doi: 10.1016/s0140-6736(75)91632-3. [DOI] [PubMed] [Google Scholar]
  12. Nakhla A. M., Majumdar A. P. Tryptophan force-feeding: changes in the activities of acetylcholinesterase in various tissues of well-fed normal and adrenalectomized rats. Biochem Biophys Res Commun. 1977 Nov 7;79(1):96–104. doi: 10.1016/0006-291x(77)90065-1. [DOI] [PubMed] [Google Scholar]
  13. Wurtman R. J., Fernstrom J. D. Control of brain neurotransmitter synthesis by precursor availability and nutritional state. Biochem Pharmacol. 1976 Aug 1;25(15):1691–1696. doi: 10.1016/0006-2952(76)90400-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES