Abstract
1. Choline methyl groups were rapidly metabolized to trimethylamine by rumen micro-organisms. 2. Trimethylamine was further metabolized to methane, but this system was more easily saturated by an excess of substrate, so that trimethylamine accumulated in the rumen of the fed animal. 3. Although trimethylamine was the only intermediate isolated in the conversion of the methyl groups of choline into methane, methylamine also served as a substrate for methane production. 4. The methyl group of methionine was also converted into methane by rumen fluid, but the methyl groups of carnitine were not.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BAKER F. D., PAPISKA H. R., CAMPBELL L. L. Choline fermentation by Desulfovibrio desulfuricans. J Bacteriol. 1962 Nov;84:973–978. doi: 10.1128/jb.84.5.973-978.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bird P. R., Moir R. J. Sulphur metabolism and excretion studies in ruminants. 8. Methionine degradation and utilization in sheep when infused into the rumen or abomasum. Aust J Biol Sci. 1972 Aug;25(4):835–848. doi: 10.1071/bi9720835. [DOI] [PubMed] [Google Scholar]
- Broad T. E., Dawson R. M. Phospholipid biosynthesis in the anaerobic protozoon Entodinium caudatum. Biochem J. 1975 Feb;146(2):317–328. doi: 10.1042/bj1460317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broad T. E., Dawson R. M. Role of choline in the nutrition of the rumen protozoon Entodinium caudatum. J Gen Microbiol. 1976 Feb;92(2):391–397. doi: 10.1099/00221287-92-2-391. [DOI] [PubMed] [Google Scholar]
- Bygrave F. L., Dawson R. M. Phosphatidylcholine biosynthesis and choline transport in the anaerobic protozoon Entodinium caudatum. Biochem J. 1976 Dec 15;160(3):481–490. doi: 10.1042/bj1600481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CAMPBELL L. L., Jr, WILLIAMS O. B. The action of members of the genus Achromobacter on trimethylamine oxide and related compounds. J Bacteriol. 1951 Aug;62(2):249–251. doi: 10.1128/jb.62.2.249-251.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Czerkawski J. W. Methane production in ruminants and its significance. World Rev Nutr Diet. 1969;11:240–282. doi: 10.1159/000387580. [DOI] [PubMed] [Google Scholar]
- DAWSON R. M. A hydrolytic procedure for the identification and estimation of individual phospholipids in biological samples. Biochem J. 1960 Apr;75:45–53. doi: 10.1042/bj0750045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dawson R. M., Hemington N. Digestion of grass lipids and pigments in the sheep rumen. Br J Nutr. 1974 Sep;32(2):327–340. doi: 10.1079/bjn19740086. [DOI] [PubMed] [Google Scholar]
- EDDY B. P. Bacterial degradation of choline. Nature. 1953 Mar 28;171(4352):573–574. doi: 10.1038/171573b0. [DOI] [PubMed] [Google Scholar]
- Eady R. R., Large P. J. Purification and properties of an amine dehydrogenase from Pseudomonas AM1 and its role in growth on methylamine. Biochem J. 1968 Jan;106(1):245–255. doi: 10.1042/bj1060245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- HAYWARD H. R., STADTMAN T. C. Anaerobic degradation of choline. I. Fermentation of choline by an anaerobic, cytochrome-producing bacterium, Vibrio cholinicus n. sp. J Bacteriol. 1959 Oct;78:557–561. doi: 10.1128/jb.78.4.557-561.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill K. J., Mangan J. L. The formation and distribution of methylamine in the ruminant digestive tract. Biochem J. 1964 Oct;93(1):39–45. doi: 10.1042/bj0930039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MICHEL M. Catabolisme de la choline par la flore intestinale du porc; étude de quelques inhibiteurs. C R Hebd Seances Acad Sci. 1956 Jun 11;242(24):2883–2886. [PubMed] [Google Scholar]
- McDougall E. I. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem J. 1948;43(1):99–109. [PMC free article] [PubMed] [Google Scholar]
- STADTMAN T. C., BARKER H. A. Studies on the methane fermentation. IX. The origin of methane in the acetate and methanol fermentations by methanosarcina. J Bacteriol. 1951 Jan;61(1):81–86. doi: 10.1128/jb.61.1.81-86.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steenkamp D. J., Mallinson J. Trimethylamine dehydrogenase from a methylotrophic bacterium. I. Isolation and steady-state kinetics. Biochim Biophys Acta. 1976 May 13;429(3):705–719. doi: 10.1016/0005-2744(76)90319-3. [DOI] [PubMed] [Google Scholar]
- Swingle R. S., Dyer I. A. Effects of choline on rumen microbial metabolism. J Anim Sci. 1970 Aug;31(2):404–408. doi: 10.2527/jas1970.312404x. [DOI] [PubMed] [Google Scholar]
- Ward P. F., Crompton D. W. The alcoholic fermentation of glucose by Moniliformis dubius (Acanthocephala), in vitro. Proc R Soc Lond B Biol Sci. 1969 Mar 11;172(1026):65–88. doi: 10.1098/rspb.1969.0012. [DOI] [PubMed] [Google Scholar]
- Ward P. F., Huskisson N. S. The metabolism of fluoroacetate in lettuce. Biochem J. 1972 Nov;130(2):575–587. doi: 10.1042/bj1300575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward P. F. The metabolism of glucose by Haemonchus contortus, in vitro. Parasitology. 1974 Oct;69(2):175–190. doi: 10.1017/s0031182000048010. [DOI] [PubMed] [Google Scholar]
- Wood A. J., Keeping F. E. The Formation of Trimethylamine from Choline as a Characteristic of Shigella Alkalescens. J Bacteriol. 1944 Mar;47(3):309–310. doi: 10.1128/jb.47.3.309-310.1944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zikakis J. P., Salsbury R. L. Metabolism of sulfur amino acids by rumen microorganisms. J Dairy Sci. 1969 Dec;52(12):2014–2019. doi: 10.3168/jds.S0022-0302(69)86888-8. [DOI] [PubMed] [Google Scholar]